JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Addition Reaction of Cyclopropane with Magnesium Dihydride (MgH2): A Theoretical Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Addition Reaction of Cyclopropane with Magnesium Dihydride (MgH2): A Theoretical Study
Singh, Satya Prakash; Meena, Jay Singh; Thankachan, Pompozhi Protasis;
  PDF(new window)
 Abstract
The addition reaction of cyclopropane with has been investigated using the B3LYP density functional method employing several split-valence basis sets. Both along the and perpendicular to the cyclopropane ring approach has been reported. It is shown that the reaction proceeds via a four-centered transition state. Calculations at higher levels of theory were also performed at the geometries optimized at the B3LYP level, but only slight changes in the barriers were observed. Structural parameters for the transition state are also reported.
 Keywords
Addition reaction;Cyclopropane;Intermediate complex;Transition state;
 Language
English
 Cited by
 References
1.
Podall, H. E.; Foster, W. E. Reactions of Magnesium Hydride and Diethylmagnesium with Olefins, J. Org. Chem. 1958, 23, 1848-1852. crossref(new window)

2.
Eugene, C. A.; Smith, T. Hydrometallation of Alkene and Alkynes with Magnesium Hydride. J. C. S. Chem. Comm. 1978, 30-31.

3.
Gropen, O.; Haaland, A.; Defrees, D. Acta Chem. 1985, 367-369

4.
Cromwell, N. H.; Graff, M. A. Three-Ring Carbonyl Hyperconjugation in Cis and Trans Aryl-Aroyl Ethylene Imines and Related Compounds. J. Org. Chem. 1952, 17, 414-425. crossref(new window)

5.
Singh, S. P.; Thankachan, P. P. Theoretical Study of the Hydroboration Reaction of Cyclopropane with Borane. J. Mol. Model. 2011, 18, 751-754.

6.
Singh, S. P.; Thankachan, P. P. Theoretical Study of the Hydroalumination Reaction of Cyclopropane with Alane. J. Korean Chem. Soc. 2013, 2, 216-220. crossref(new window)

7.
Frisch, M. J.; et al GAUSSIAN98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

8.
Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. crossref(new window)

9.
Head-Gordon, M.; Pople, J. A.; Frisch, M. J. MP2 Energy Evaluation by Direct Methods. Chem. Phys. Lett. 1988, 153, 503-506. crossref(new window)

10.
Frisch, M. J.; Head-Gordon, M. Pople, J. A. A Direct MP2 Gradient Method. Chem. Phys. Lett. 1990, 166, 275-280. crossref(new window)

11.
Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Semi-Direct Algorithms for the MP2 Energy and Gradient. Chem. Phys. Lett. 1990, 166, 281-289. crossref(new window)

12.
Head-Gordon, M.; Head-Gordon, T. Analytic MP2 Frequencies without Fifth-Order Storage. Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer. Chem. Phys. Lett. 1994, 220, 122-128. crossref(new window)

13.
Sæbø, S.; Almlöf, J. Avoiding the Integral Storage Bottleneck in LCAO Calculations of Electron Correlation. Chem. Phys. Lett. 1989, 154, 83-89. crossref(new window)

14.
Cizek, J. Adv. Chem. Phys. 1969, 14, 35.

15.
Purvis, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910-1918. crossref(new window)

16.
Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. An Efficient Reformulation of the Closed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equations. J. Chem. Phys. 1988, 89, 7382-7387. crossref(new window)

17.
Scuseria, G. E.; Schaefer, H. F. Is Coupled Cluster Singles and Doubles (CCSD) more computationally Intensive than Quadratic Configuration Interaction (QCISD)?. J. Chem. Phys. 1989, 90, 3700-3703. crossref(new window)

18.
Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies. J. Chem. Phys. 1987, 87, 5968-5975. crossref(new window)

19.
Woon, D. E.; Dunning, J. T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Cheml. Phys. 1993, 98, 1358-1371. crossref(new window)

20.
Houk, K. N.; et al. Theoretical Studies of Stereoselective Hydroborations. Tetrahedron 1984, 40, 2257-2274. crossref(new window)

21.
Wang, X.; et al. Ab initio Transition Structures for Hydroborations of Alkenes, Allenes, and Alkynes by Borane, Diborane, Methylborane, Methylfluoroborane, and Dimethylborane. J. Org. Chem. 1990, 55, 2601-2609. crossref(new window)

22.
Bundens, J. W.; Francl, M. M. Transition States for Hydroalumination of Alkenes and Alkynes: Ab initio Molecular Orbital Studies. Organometallics 1993, 12, 1608-1615. crossref(new window)

23.
Chey, J.; et al., pi-Complexes of Alkenes to Trivalent Aluminum. Organomet. 1990, 9, 2430-2436. crossref(new window)