JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Treatment of Rice Mill Wastewater Using Continuous Electrocoagulation Technique: Optimization and Modelling
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Treatment of Rice Mill Wastewater Using Continuous Electrocoagulation Technique: Optimization and Modelling
Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran; Sengodan, Kandasamy;
  PDF(new window)
 Abstract
Removal of COD and TSS from rice mill wastewater was investigated using continuous electrocoagulation method (CEC). The electrical energy consumption (EEC) of the process was also examined in order to evaluate the economic viability. The Box-Behnken statistical experiment design (BBD) and response surface methodology (RSM) were used to investigate the effects of major operating variables. Initial pH, current density, electrode distance and flow rate were selected as independent variables in BBD while COD removal, TSS removal and EEC were considered as the response functions. The predicted values of responses obtained using the response function was in good agreement with the experimental data. Optimum operating conditions were found to be pH of 7, current density of 15 mA , electrode distance of 5 cm and flow rate of 70 ml/min. Under these conditions, greater than 89% removal of COD and TSS were obtained with EEC value of 7 KWh.
 Keywords
Rice mill wastewater;Electrocoagulation;Box-Behnken design;Model development;Validation;
 Language
English
 Cited by
1.
Employing a novel nanocatalyst (Mn/Iranian hematite) for oxidation of SO2 pollutant in aqueous environment, International Journal of Environmental Science and Technology, 2017  crossref(new windwow)
2.
Development of Box Behnken design for treatment of terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge, Journal of Environmental Chemical Engineering, 2016, 4, 1, 178  crossref(new windwow)
3.
Studies on treatment of egg processing industry wastewater using electrocoagulation method: optimization using response surface methodology, Desalination and Water Treatment, 2016, 57, 46, 21721  crossref(new windwow)
4.
Evaluation of an electrocoagulation process for the treatment of bagasse-based pulp and paper industry wastewater, Environmental Progress & Sustainable Energy, 2015, 34, 2, 411  crossref(new windwow)
5.
Modeling and optimization of biogas production from rice mill effluent using up flow anaerobic sludge blanket reactor, Journal of Renewable and Sustainable Energy, 2014, 6, 2, 023129  crossref(new windwow)
6.
An eco-friendly approach for copper (II) ion adsorption onto cotton seed cake and its characterization: Simulation and validation, Journal of the Taiwan Institute of Chemical Engineers, 2015, 50, 198  crossref(new windwow)
7.
Modeling and optimization of treatment of milk industry wastewater using chitosan–zinc oxide nanocomposite, Desalination and Water Treatment, 2016, 57, 40, 18630  crossref(new windwow)
8.
Response surface modeling and optimization of upflow anaerobic sludge blanket reactor process parameters for the treatment of bagasse based pulp and paper industry wastewater, Desalination and Water Treatment, 2015, 1  crossref(new windwow)
9.
Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology, The Scientific World Journal, 2015, 2015, 1  crossref(new windwow)
10.
Current techniques in rice mill effluent treatment: Emerging opportunities for waste reuse and waste-to-energy conversion, Chemosphere, 2016, 164, 404  crossref(new windwow)
11.
Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method, Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 160  crossref(new windwow)
12.
Thermodynamics and kinetics study of defluoridation using Ca-SiO2-TiO2 as adsorbent: Column studies and statistical approach, Korean Journal of Chemical Engineering, 2017, 34, 1, 179  crossref(new windwow)
13.
Use of D escurainia sophia L . As a natural coagulant for the treatment of dye-containing wastewater, Environmental Progress & Sustainable Energy, 2016, 35, 4, 996  crossref(new windwow)
14.
Removal of ecotoxicological matters from tannery wastewater using electrocoagulation reactor: modelling and optimization, Desalination and Water Treatment, 2016, 57, 9, 3871  crossref(new windwow)
15.
Performance evaluation and optimization of electrocoagulation process to treat grey wastewater, Desalination and Water Treatment, 2015, 55, 7, 1703  crossref(new windwow)
 References
1.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013, DOI: 10.2298/JSC130201053T. crossref(new window)

2.
Rajesh, G.; Bandyopadhyay, M.; Das, D. Biopro. Eng. 1999, 21, 113. crossref(new window)

3.
Manogari, R.; Daniel, D.; Krastanov, A. Ecol. Eng. Environ. Protect. 2008, 1, 30.

4.
Manaswini, B.; Partha S. J.; Tanaji T. M.; Ghangrekar, M. M. Bioelectrochemistry 2010, 79, 228. crossref(new window)

5.
Sridhar, R.; Sivakumar, V.; Prince Immanuel, V.; Prakash Maran, J. J. Hazard. Mater. 2011, 186, 1495. crossref(new window)

6.
Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M. J. Hazard. Mater. 2009, 164, 215. crossref(new window)

7.
Bayramoglu, M.; Kobya, M.; Can, O. T.; Sozbir, M. Sep. Purif. Technol. 2004, 37, 117. crossref(new window)

8.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013, DOI: 10.2298/JSC130408074T. crossref(new window)

9.
Bhatti, M. S.; Kapoor, D.; Kalia, R. K.; Reddy, A. S.; Thukral, A. K. Desalination 2011, 274, 74. crossref(new window)

10.
Muftah, H. E. N.; Sulaiman, A.; Amal, A.; Souzan, M. J Environ. manage. 2009, 91, 180. crossref(new window)

11.
Prakash Maran, J.; Sivakumar, V.; Sridhar, R.; Prince Immanuel, V. Ind. Crop. Prod. 2013, 42, 159. crossref(new window)

12.
Zodi, S.; Potier, O.; Lapicque, F.; Leclerc, J. Desalination 2010, 261, 186. crossref(new window)

13.
Prakash Maran, J.; Manikandan, S.; Thirugnanasambandham, K.; Vigna Nivetha, C.; Dinesh, R. Carbohyd Polym. 2013, 92, 604. crossref(new window)

14.
Olmez, T. J. Hazard. Mater. 2009, 162, 1371. crossref(new window)

15.
Korbahti, B. K.; Aktas, N.; Tanyolac, A. J. Hazard. Mater. 2007, 148, 83. crossref(new window)

16.
Jianfeng, F.; Yaqian, Z.; Qiuli, W. J. Hazard. Mater. 2007, 144, 499. crossref(new window)

17.
Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Prep Biochem Biotech. 2013 DOI: 10.1080/ 10826068.2013.791629. crossref(new window)

18.
Gao, P.; Chen, X.; Shen, F.; Chen, G. Sep. Purif. Technol. 2005, 43, 117. crossref(new window)

19.
Khalid, B.; Melhem, E. S. J. Chem. Eng. 2012, 198, 201.

20.
Ravikumar, K.; Pakshirajan, K.; Swaminathan, T.; Balu, K. Chem. Eng. J. 2005, 105, 131. crossref(new window)

21.
Tak Hyun, K.; Chulhwan, P.; Eung Bai, Shin.; Sangyong, K. Desalination 2002, 150, 165. crossref(new window)

22.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. Carbohyd. Polym. 2013, 97, 451. crossref(new window)