JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Regioselective Nitration of Inactive 4,4-Dibromobiphenyl with Nitrogen Dioxide and Molecular Oxygen over Zeolites: An Efficient Preparation of 4,4'-Dibromo-2-nitrobiphenyl
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Regioselective Nitration of Inactive 4,4-Dibromobiphenyl with Nitrogen Dioxide and Molecular Oxygen over Zeolites: An Efficient Preparation of 4,4'-Dibromo-2-nitrobiphenyl
Wang, Wei; Peng, Xinhua; Chen, Nan;
  PDF(new window)
 Abstract
In the presence of zeolites, 4,4'-dibromobiphenyl could be region-selectively nitrated by the action of nitrogen dioxide and molecular oxygen. The ratio of 4,4'-dibromo-2-nitrobiphenyl to 4,4'-dibromo-3-nitrobiphenyl could reach 14 in a high yield of 90%. Zeolites could be easily regenerated by heating and reused four times to give the results similar to those obtained with fresh catalyst. Compared with the classic nitration method, no nitric acid and sulfuric acid were used, which suggested that the method was an environmentally economic process.
 Keywords
4,4'-Dibromobiphenyl;4,4'-Dibromo-2-nitrobiphenyl;Nitration;Nitrogen dioxide;Zeolite;
 Language
English
 Cited by
 References
1.
(a) Cortona, M. N.; Vettorazzi, N.; Silber, J. J.; Sereno, L. J. Electroanal. Chem. 1995, 394, 245. crossref(new window)

2.
(b) Halder, R.; Lawal, A.; Damavarapu, R. Catal. Today 2007, 125, 74. crossref(new window)

3.
(c) Chaubal, N. S.; Sawant, M. R. Catal. Commun. 2007, 8, 845. crossref(new window)

4.
(d) Belciug, M.; Ananthanarayanan, V. S. J. Med. Chem. 1994, 37, 4392. crossref(new window)

5.
(a) Smith, K.; Almeer, S.; Peters, C. Chem. Commun. 2001, 2748.

6.
(b) Samajdar, S.; Becker, F. F.; Banik, B. B. Tetrahedron Lett. 2000, 41, 8017. crossref(new window)

7.
(c) Tasneem, M. M.; Ali, K. C.; Rajanna, Saiparakas, P. K. Synth. Commun. 2001, 31, 1123. crossref(new window)

8.
(d) Bharadwaj, S. K.; Hussain, S.; Kar, M. Catal. Commun. 2008, 9, 919. crossref(new window)

9.
Nishiwaki, Y.; Sakaguchi, S.; Ishii,Y. J. Org. Chem. 2002, 67, 5663. crossref(new window)

10.
Suzuki, H.; Yonezawa, S.; Nonoyama, N. and Mori, T. J. Chem. Soc. Perkin Trans. 1996, 1, 2385.

11.
Peng, X. H.; Fukui, N.; Mizuta, M. and Suzuki, H. Org. Biomol. Chem. 2003, 1, 2326. crossref(new window)

12.
(a) Smith, K.; Almeer, S.; Black, S. J.; Peters, C. J. Mater. Chem. 2002, 12, 3285. crossref(new window)

13.
(b) Parac-Vogt, T. N.; Pachini, S.; Nockemann, P.; Hecke, K. V.; Meervelt, L. V.; Binnemans, K. Eur. J. Org. Chem. 2004, 4560.

14.
(a) Yasutani, Y.; Honsho, Y.; Saeki, A.; Seki, S. Synth. Met. 2012, 162, 1713. crossref(new window)

15.
(b) Kawabata, K.; Goto, H. Synth. Met. 2010, 160, 2290. crossref(new window)

16.
(c) Ooyama, Y.; Sugiyama, T.; Oda, Y.; Hagiwara, Y. N.; Yamaguchi, E.; Miyazaki, H.; Fukuoka, T.; Harima, Y. and Ohshita, J. Eur. J. Org. Chem. 2012, 4853.

17.
(d) Freeman, A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem. 2005, 70, 5014. crossref(new window)

18.
(a) Lee, J. C.; WO 2009061145 A1, 2009, CAPLUS

19.
(b) WSS: Spectral data were obtained from Wiley Subscription Servies, Inc. (US).

20.
Smith, K.; Almeer, S.; Black, S. J. Chem. Commun. 2000, 1571.

21.
Peng, X.; Suzuki, H.; Lu, C. Tetrahedron Lett. 2001, 42, 4357. crossref(new window)

22.
Shi, C. J.; Tai, Y. F.; Liu, H. T. Bull. Korean Chem. Soc. 2013, 34, 3485. crossref(new window)