Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin;
Abstract
The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature , excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process.
Fly ash based ceramic microfiltration membranes for oil-water emulsion treatment: Parametric optimization using response surface methodology, Journal of Water Process Engineering, 2016, 13, 27
2.
MILP synthesis of separation processes for waste oil-in-water emulsions treatment, Frontiers of Chemical Science and Engineering, 2016, 10, 1, 120
References
1.
Kong, J.; Li, K. Sep. Purif. Technol. 1999, 16, 83.
2.
Noshadi, I.; Salahi, A.; Hemmati, M.; Rekabdar, F.; Mohammadi, T. Asia-Pacific J. Chem. Eng. 2013, 8, 527.
3.
Salahi, A.; Mohammadi, T.; Nikbakht, M.; Golshenas, M.; Noshadi, I. Desalin. Water Treat. 2012, 48, 27.
4.
Oatley, L. D.; Cassey, B.; Jones, P.; Bowen, W. R. Chem. Eng. Sci. 2005, 60, 1953.
5.
Salahi, A.; Mohammadi, T. Water Sci. Technol. 2010, 62,245.
6.
Sarkar, D.; Datta, D.; Sen, D.; Bhattacharjee, C. Chem. Eng. Sci. 2011, 66, 2554.
7.
Wake, H. Estuarine Coast. Shelf. Sci. 2005, 62, 131.
8.
Rezvanpour, A.; Roostaazad, R.; Hesampour, M.; Nystrom, M.; Ghotbi, C. J. Hazard. Mater. 2009, 16, 1216.
9.
Glaze, W. H.; Kang, J. W.; Chapin, D. H. Ozone-Sci. Eng. 1987, 9, 335.
10.
Garcia-Molina, V.; Lopez-Arias, M.; Florczyk, M.; Chamarro, E.; Esplugas, S. Water Res. 2005, 39, 795.
11.
Lopes, R. J. G.; Perdigoto, M. L. N.; Quinta-Ferreira, R. M. Appl. Catal., B 2012, 292, 117-118.
12.
Dominguez, C. M.; Ocon, P.; Quintanilla, A.; Casas, J. A.; Rodriguez, J. J. Appl. Catal., B 2013, 663, 140-141.
13.
Galeano, L. A.; Vicente, M. A.; Gil A. Chem. Eng. J. 2011, 178, 146-153.
14.
Garcia-Molina, V.; Lopez-Arias, M.; Florczyk, M.; Chamarro, E.; Esplugas, S. Water Res. 2005, 39, 795.
15.
Ribeiro, R. S.; Fathy, N. A.; Attia, A. A.; Silva, A. M. T.; Faria, J. L.; Gomes, H. T. Chem. Eng. J. 2012, 112, 195-196.
16.
Muhamad, M. H.; Abdullah, S. R. S.; Mohamad, A. B.; Rahman, R. A.; Kadhum, A. A. H. J. Environ. Manage. 2013,121, 179.
17.
Li, J.; Peng, J. H.; Guo, S. H.; Zhang, L. B. J. Alloys Compd. 2013, 574, 504.
18.
Hazime, R.; Nguyen, Q. H.; Ferronato, C.; Huynh, T. K. X.; Jaber, F.; Chovelon, J. M. Appl. Catal., B 2013, 519,132-133.
19.
Noshadi, I.; Amin, N. A. S.; Parnas, R. S. Fuel 2012, 94,156.
20.
Zhao, X. H.; Jiang, R.; Zu, Y. G.; Wang, Y.; Zhao, Q.; Zu, B. S.; Zhao, D. M.; Wang, M. X.; Sun, Z. Q. Appl. Surf. Sci. 2012, 258, 2000.