JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis of Efficiency of Bacillus subtilis To Treat Bagasse Based Paper and Pulp Industry Wastewater-A Novel Approach
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Efficiency of Bacillus subtilis To Treat Bagasse Based Paper and Pulp Industry Wastewater-A Novel Approach
Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran;
  PDF(new window)
 Abstract
In this present study, bagasse based pulp and paper industry wastewater was treated under different operating conditions such as initial pH (6-8), temperature () and contact time (3-7 days) by using Bacillus subtilis. Response surface methodology (RSM) coupled with Box-Behnken response surface design (BBD) was employed to investigate the effect of process variables on the responses such as turbidity, biological oxygen demand (BOD) and chemical oxygen demand (COD) removal. The experimental data were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed. Interactive effects of the process variables on the responses were studied using plotting 3D response surface contour graph and the optimum process conditions were found to be: initial pH of 7, temperature of and contact time of 5 days. Under these conditions, removal efficiencies of turbidity, BOD and COD were found to be 85%, 93% and 80% respectively which are close agreement with real experiments. These results indicate that the treatment of bagasse based pulp and paper industry wastewater using Bacillus subtilis is an effective and novel technique.
 Keywords
Bacillus subtilis;Bagasse wastewater;Box-Behnken design;Modeling;Optimization;
 Language
English
 Cited by
1.
Modeling of by-product recovery and performance evaluation of Electro-Fenton treatment technique to treat poultry wastewater, Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 89  crossref(new windwow)
2.
Pilot scale evaluation of feasibility of reuse of wine industry wastewater using reverse osmosis system: modeling and optimization, Desalination and Water Treatment, 2016, 57, 53, 25358  crossref(new windwow)
3.
Optimization of reverse osmosis treatment process to reuse the distillery wastewater using Taguchi design, Desalination and Water Treatment, 2016, 57, 51, 24222  crossref(new windwow)
4.
Evaluation of an electrocoagulation process for the treatment of bagasse-based pulp and paper industry wastewater, Environmental Progress & Sustainable Energy, 2015, 34, 2, 411  crossref(new windwow)
5.
Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method, Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 160  crossref(new windwow)
6.
Efficiency of electrocoagulation method to treat chicken processing industry wastewater—modeling and optimization, Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 5, 2427  crossref(new windwow)
 References
1.
Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M. J. Hazard. Mater. 2009, 164, 215. crossref(new window)

2.
Khalid, B.; Melhem, E. S. J. Chem Eng. 2012, 198,201.

3.
Manaswini, B.; Partha, S. J.; Tanaji, T. M.; Ghangrekar, M. M. Bioelectrochemistry 2010, 79, 228. crossref(new window)

4.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. Carbohyd. Polym. 2013, 97, 451. crossref(new window)

5.
Zouboulis, A.; Katsoyiannis, I. Sep. Sci. Tech. 2002, 37,2859. crossref(new window)

6.
Lew, B.; Tarre, S.; Belavski, M.; Gree, M. Water Sci. Tech. 2004, 49, 295.

7.
Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Prep. Biochem. Biotech. 2013. DOI:10.1080/10826068.2013.791629. crossref(new window)

8.
Aghamohammadi, N.; Aziz, H. A; Isa, M. H.; Zinatizadeh, A. A. Bioresour. Tech. 2007, 98, 3570. crossref(new window)

9.
Nordin, M. Y.; Venkatesh, V. C.; Sharif, S.; Elting, S.; Abdullah, A. J. Mater. Process Tech. 2004, 145, 46. crossref(new window)

10.
Sridhar, R.; Sivakumar, V.; Prince Immanuel, V.; Prakash Maran, J. J. Hazard. Mater. 2011, 186, 1495. crossref(new window)

11.
Reungsang, A.; Pattra, S.; Sittijunda, S. Energies 2012, 5, 4746. crossref(new window)

12.
APHA, WPCF, AWWA Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association (APHA): Washington, DC, 1992.

13.
Prakash Maran, J.; Manikandan, S.; Thirugnanasambandham, K.; Vigna Nivetha, C.; Dinesh, R. Carbohyd. Polym. 2013, 92, 604. crossref(new window)

14.
Bhatti, M. S.; Reddy, A. S.; Thukral, A. K. J. Hazard. Mater. 2009, 172, 839. crossref(new window)

15.
Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ara. J. Chem. DOI: 10.1016/j.arabjc.2013.02.007 crossref(new window)

16.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130201053T. crossref(new window)

17.
Kabir, E.; Hussain, D.; Haque, A.; Kim, K. H. Int. J. Green Energy. 2009, 6(4), 381. crossref(new window)

18.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130408074T. crossref(new window)

19.
Tak Hyun, K.; Chulhwan, P.; Eung Bai, Shin.; Sangyong, K. Desalination. 2002, 150, 165. crossref(new window)

20.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130408074T. crossref(new window)

21.
Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K. Food Sci. Biotechnol. DOI 10.1007/s10068-014-0.

22.
Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130619153T. crossref(new window)