Advanced SearchSearch Tips
Inhibitory Effect of {Surfactant- MnO4-} Aggregation in KMnO4 Oxidation of Proline and Methionine: A Kinetic Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Inhibitory Effect of {Surfactant- MnO4-} Aggregation in KMnO4 Oxidation of Proline and Methionine: A Kinetic Study
Tripathi, Ritu; Upadhyay, Santosh K.;
  PDF(new window)
Anionic (sodium lauryl sulphate, NaLS) cationic (cetyl ammonium bromide, CTAB) and non-ionic (Tween-80) surfactants have been found to inhibit the rate of oxiadation L-proline and L-methionine by alkaline . A first order dependence of rate of oxidation was observed with respect to . The order of reaction in substrate and alkali was found to be fractional nearby 0.65 and 0.55 in Aminoacid and , respectively. An aggregation/association between and surfactant has been confirmed spectrophotometrically. A mechanism, involving kinetically inactive [ surfactant] aggregate and consistent with kinetic data, has been proposed. The effect of surfactants has been discussed in terms of hydrophobic and electrostatic interactions.
 Cited by
-proline to pyrroline-2-carboxylate, Dalton Transactions, 2017, 46, 43, 15059  crossref(new windwow)
Fendler, J. H.; Fendler, E. H. Catalysis in Micellar and Micromolecular Systems; Academic Press: New York, 1975.

Romsted, L. S. In Micellization, Solubilization and Microemulsion; K. L. Mittal, Ed.; Plenum: New Yark, 1977; Vol. 2.

Das, A. K. Micellar Effect on the Kinetics and Mechanism of Chromium(VI) Oxidation of organic Substrates. Coordination Chem. Review 2004, 248, 81. crossref(new window)

Buntan, C. A. The Dependence of Micellar Rate Effects upon Reaction Mechanism. Advances in Colloids and Interface Science 2006, 123, 333.

Khan, M. N. Micellar Catalysis; Surfactant Science Series; Taylor and Frances: London, New York, 2006.

Upadhyay, S. K.; Kambo, N.; Shukla, R. Micellar Effect in Redox Reactions. Current Focus on Colloids and Surfaces 2009, 345-389.

Panigrahi, G. P.; Swain, R. Kinetics and Mechanism of Oxidation Hydroxyl Amine Hydrochloride by Vanadium(V) in the Presence of Sodium Lauryl Sulphate. Indain J. Chem. Sect. A 2001, 40, 1191.

Din, K. U.; Hartani, K.; Khan, Z. Micellar Caralysis on the Redox-Reactions of Glycolic acid with Chromium (VI). Int. J. Chem. Kinetics 2001, 33, 377. crossref(new window)

Din, K. U.; Morshed, A.; Mohammad, A.; Khan, Z. Micellar Effects of on the Chromium(VI) Oxidation of D(+)-Xylose. Inorg. React. Mech. (USA) 2002, 3, 255-266. crossref(new window)

Pandey, S.; Upadhyay, S. K. Effect of Cationic Micellar Aggregates on the Kinetics of Oxidation of Aminoalcohols by N-Bromosuccinimide in Alkaline Medium. J. Colloid. Inter. Sci. 2005, 285, 789. crossref(new window)

Pandey, E.; Upadhyay, S. K. Effect of Micellar Aggregates on the Kinetics of Oxidation alpha Amino Acid by Chloramine-T in Perchloric Acid Medium. Colloids Surfaces A 2005, 269, 7. crossref(new window)

Panda, J.; Panigrahi, G. P. Kinetics of Cationic Micelle Catlayzed Oxidation of Cyclohexane by Vanadium(V). J. Ind. Chem. Soc. 2002, 79, 58.

Malik, M. A.; Alo-thabaiti, S. A.; Khan, Z. Kinetics of Oxidation D-Glucose by Permanaganate in Aqueous Solution of Cetyl Trimethyl Ammonum Bromide. J. Colloid. Inter. Sci. 2009, 337, 9-14.

Khan, Z.; Din, K. U. Kinetics and Mechanism of Oxidation D-Glucose by Chromium(VI) in Perchloric Acid. Ind. J. Chem. 2000, 39A, 522-527.

Shukla, R.; Upadhyay, S. K. Inhbition Effect of {Surfctant- Substrate} Aggregation on the Rate of Oxidation of Reducing Sugars by Alkaline Hexacyanoferrate(III); A Kinetic Study. Int. J. Chem. Kinet. 2007, 39, 595. crossref(new window)

Shukla, R.; Upadhyay, S. K. Non-ionic Micellar Inhibition on the Rate of Oxidation of L-Histidine by Alkaline Hexacyanoferrate( III). Ind. J. Chem. 2008, 47A, 551.

Gautam, A.; Kambo, N.; Upadhyay, S. K.; Singh, R. P. Anionic Gemini Surfactant viz. Sodium Salt of bis(1- Dodecyl succinamic acid); Sunthesis, Surface Properties And micellar Effect of Oxidation of Reducing Sugars by Hexacyanoferrate(III). Colloids Surf., A 2007, 296, 117. crossref(new window)

Kambo, N.; Upadhyay, S. K. Antagonism in (Conventional Anionic-Gemini Anionic) Mixed Catalysed Oxidak tion of D-Fructose by Alakaline Chloramine-T; A Kinetic study. Int. J. Chem Kinet. 2009, 41, 123. crossref(new window)

Rosen, M. J.; Dahanayake, M. Industrial Utilization of Surfactants: Principle and Practice; AOCS: 2000.

Shukla, R.; Upadhyay, S. K. Tween-80 Micellar Catalysed Oxidation of Methionine and Proline by Alkaline Hexacyanoferrate(III). Colloid Surf. A 2008, 331, 245. crossref(new window)

Harley, C. S.; Collie, B.; Samis, C. S. Transport Numbers of Paraffine-Chain Salts in Aqueous Solution Part-1 Measurement of Transport Numbers of Cetyl Pyridinium and cetyl Trimethylammonium Bromide and There Interpreatation Interms of Micelles Formation, with Some Data Also for Cetane Sulphuric Acid. Trans Faraday Soc. 1936, 32, 795. crossref(new window)

Menger, F. M.; Portnoy, C. E. Chemistry of Reactions Proceeding Inside Molecular Aggregate. J. Am. Chem. Soc. 1967, 89, 4698. crossref(new window)

Holemberg, K.; Jonson, B.; Kromberg, B.; Lindman, B. Surfactants and Polymer in Aqueous Solution: Sweden, Stockholm, 1997.

Feigl, F. Spot Test in Organic Analysis; Elsevier Publishing Co: New York, 1956; pp 208-236.

Dash, S.; Patel, S.; Mishra, B. K. Oxidation by Permanganate: Synthetic and Mechanistic Aspects Tetrahedron. 2009, 65, 707-739.

Menger, F. M.; Bender, M. L. The Effect of Charge Transfer Complexation on the Hydrolysis of Some Caboxylic Acid Derivatives. J. Am. Chem. Soc. 1966, 88, 131. crossref(new window)

Cordes, E. H.; Gilter, C. Reaction Kinetics in Presence of Micelle-Forming Surfactant in Progress in Bio. Organic Chemistry; Kaiser, E. T., Kezdy, F. J. Wiley: New York, 1973; Vol. 2.