JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes
Kim, Taekyeong;
  PDF(new window)
 Abstract
We measure the conductance of a 4,4`-diaminobiphenyl formed with Ni electrodes using a scanning tunneling microscope-based break-junction technique. For comparison, we use Au or Ag electrodes to form a metal-molecular junction. For molecules that conduct through the highest occupied molecular orbital, junctions formed with Ni show similar conductance as Au and are more conductive than those formed with Ag, consistent with the higher work function for Ni or Au. Furthermore, we observe that the measured molecular junction length that is formed with the Ni or Au electrodes was shorter than that formed with the Ag electrodes. These observations are attributed to a larger gap distance of the Ni or Au electrodes compared to that of the Ag electrodes after the metal contact ruptures. Since our work allows us to measure the conductance of a molecule formed with various electrodes, it should be relevant to molecular electronics with versatile materials.
 Keywords
Scanning tunneling microscope based break-junction;Single molecule;Ni electrodes;Statistical analysis;
 Language
English
 Cited by
 References
1.
Park, Y. S.; Whalley, A. C.; Kamenetska, M.; Steigerwald, M. L.; Hybertsen, M. S.; Nuckolls, C.; Venkataraman, L. J. Am. Chem. Soc. 2007, 129, 15768. crossref(new window)

2.
Kim, T.; Vazquez, H.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2013, 13, 3358. crossref(new window)

3.
Frei, M.; Aradhya, S. V.; Hybertsen, M. S.; Venkataraman, L. J. Am. Chem. Soc. 2012, 134, 4003. crossref(new window)

4.
Frei, M.; Aradhya, S. V.; Koentopp, M.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2011, 11, 1518. crossref(new window)

5.
Kim, B.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. J. Am. Chem. Soc. 2011, 133, 19864. crossref(new window)

6.
Beebe, J. M.; Engelkes, V. B.; Miller, L. L.; Frisbie, C. D. J. Am. Chem. Soc. 2002, 124, 11268. crossref(new window)

7.
Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904. crossref(new window)

8.
Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2006, 6, 458. crossref(new window)

9.
Jiang, N.; Foley, E. T.; Klingsporn, J. M.; Sonntag, M. D.; Valley, N. A.; Dieringer, J. A.; Seideman, T.; Schatz, G. C.; Hersam, M. C.; Van Duyne, R. P. Nano Lett. 2011, 12, 5061.

10.
Lee, S. J.; Baik, J. M.; Moskovits, M. Nano Lett. 2008, 8, 3244. crossref(new window)

11.
van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Nat Nano 2012, 7, 583. crossref(new window)

12.
Liu, X.; Wang, F.; Niazov-Elkan, A.; Guo, W.; Willner, I. Nano Lett. 2012, 13, 309.

13.
Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; VenkataramanLatha Nat Nano 2009, 4, 230. crossref(new window)

14.
Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mater. 1999, 11, 605. crossref(new window)

15.
Yee, S. K.; Malen, J. A.; Majumdar, A.; Segalman, R. A. Nano Lett. 2011, 11, 4089. crossref(new window)

16.
Kamenetska, M.; Quek, S. Y.; Whalley, A. C.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Nuckolls, C.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. J. Am. Chem. Soc. 2010, 132, 6817. crossref(new window)

17.
Kamenetska, M.; Koentopp, M.; Whalley, A. C.; Park, Y. S.; Steigerwald, M. L.; Nuckolls, C.; Hybertsen, M. S.; Venkataraman, L. Phys. Rev. Lett. 2009, 102, 126803. crossref(new window)

18.
Aradhya, S. V.; Frei, M.; Halbritter, A.; Venkataraman, L. ACS nano 2013, 7, 3706. crossref(new window)

19.
Rubio-Bollinger, G.; Bahn, S. R.; Agraït, N.; Jacobsen, K. W.; Vieira, S. Phys. Rev. Lett. 2001, 87, 026101. crossref(new window)