JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Partial Miscibility of Binary Solution with Specific Interaction of Binomial Distribution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Partial Miscibility of Binary Solution with Specific Interaction of Binomial Distribution
Jung, Hae-Young;
  PDF(new window)
 Abstract
In some binary solution, closed miscibility loop of temperature-composition phase diagram occurs where both an upper critical solution temperature and a lower critical solution temperature exist. It is known that this phenomena occurs if specific interaction between molecules exists. There are several ways describing the specific interaction. In this work it is assumed that the total number of specific interactions is distributed according to binomial distribution. In this case, exact mathematical conditions for closed miscibility loop phase behavior are derived when the specific interaction is applied to regular solution theory, quasichemical theory and Flory-Huggins lattice theory. And we investigated the effect of parameters on the phase diagram. The phase diagram of water-nicotine is calculated and compared with experimental data.
 Keywords
Partial miscibility;Closed miscibility loop;Specific interaction;Quasichemical theory;Flory-Huggins lattice theory;
 Language
Korean
 Cited by
1.
두 종류의 특정상호작용을 갖는 이성분 용액의 부분 혼합도,정해영;

대한화학회지, 2016. vol.60. 2, pp.111-117 crossref(new window)
1.
Partial Miscibilities in Binary Solutions with Two Kinds of Specific Interactions, Journal of the Korean Chemical Society, 2016, 60, 2, 111  crossref(new windwow)
 References
1.
Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. The Molecular Theory of Gases and Liquids; John Wiley & Sons: 1954.

2.
Hildebrand, J. H.; Scott, R. L. The Solubility of Nonelectrolytes; Dover 1964.

3.
Flory, P. J. J. Chem. Phys. 1941, 9, 660.

4.
Flory, P. J. J. Chem. Phys. 1942, 10, 51. crossref(new window)

5.
Guggenheim, E. A. Mixtures; Clarendon Press, Oxford: 1952.

6.
Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd Ed.; Prentice-Hall: 1986.

7.
Sorensen, J. M.; Arlt, W. Liquid-liquid Equilibrium Data Collection; Chemistry data series Volume V, Part 1; DECHEMA: 1979.

8.
Barker, J. A; Fock, W. Disc. Farad. Soc. 1953, 15, 188. crossref(new window)

9.
Wheeler, J. C. J. Chem. Phys. 1975, 62, 433. crossref(new window)

10.
Anderson, G. R.; Wheeler, J. C. J. Chem. Phys. 1978, 69, 3403. crossref(new window)

11.
Matsuyama, A.; Tanaka, F. Phys. Rev. Lett. 1990, 65, 341. crossref(new window)

12.
Waker, J. S.; Vause, C. A. Phys. Lett. 1980, 79A, 421.

13.
Brinke, G. T.; Karasz, F. E. Macromolecules 1984, 17, 815. crossref(new window)

14.
Sanchez, I. C.; Balas, A. C. Macromolecules 1989, 22, 2325. crossref(new window)

15.
Hino, T.; Lambert, S. M.; Soane, D. S; Prausnitz, J. M. AIChE J. 1993, 39, 837. crossref(new window)

16.
Hill, T. L. An Introduction to Statistical Thermodynamics; Dover: 1987.