JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes
Kim, Taekyeong;
  PDF(new window)
 Abstract
Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.
 Keywords
Molecular conductance;Force spectroscopy;Silver electrodes;Bond rupture;Break-junction;
 Language
English
 Cited by
 References
1.
Xu, B.; Tao, N. J. Science 2003, 301, 1221. crossref(new window)

2.
Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904. crossref(new window)

3.
Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2006, 6, 458. crossref(new window)

4.
Kim, T.; Vazquez, H.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2013, 13, 3358. crossref(new window)

5.
Jiang, N.; Foley, E. T.; Klingsporn, J. M.; Sonntag, M. D.; Valley, N. A.; Dieringer, J. A.; Seideman, T.; Schatz, G. C.; Hersam, M. C.; Van Duyne, R. P. Nano Lett. 2011, 12, 5061.

6.
van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Nat. Nanotechnol. 2012, 7, 583. crossref(new window)

7.
Kaneko, S.; Nakazumi, T.; Kiguchi, M. J. Phys. Chem. Lett. 2010, 1, 3520. crossref(new window)

8.
Frei, M.; Aradhya, S. V.; Hybertsen, M. S.; Venkataraman, L. J. Am. Chem. Soc. 2012, 134, 4003. crossref(new window)

9.
Frei, M.; Aradhya, S. V.; Koentopp, M.; Hybertsen, M. S.; Venkataraman, L. Nano Lett. 2011, 11, 1518. crossref(new window)

10.
Aradhya, S. V.; Frei, M.; Halbritter, A.; Venkataraman, L. ACS nano 2013, 7, 3706. crossref(new window)

11.
Aradhya, S. V.; Frei, M.; Hybertsen, M. S.; Venkataraman, L. Nat. Mater. 2012, 11, 872. crossref(new window)

12.
Morita, T.; Lindsay, S. J. Am. Chem. Soc. 2007, 129, 7262. crossref(new window)

13.
Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571. crossref(new window)

14.
Marszalek, P. E.; Greenleaf, W. J.; Li, H.; Oberhauser, A. F.; Fernandez, J. M. Proc. Natl. Acad. Sci. 2000, 97, 6282. crossref(new window)

15.
Dweydari, A. W.; Mee, C. H. B. Phys. Status Solidi A 1975, 27, 223. crossref(new window)

16.
Kim, B.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. J. Am.Chem. Soc. 2011, 133, 19864. crossref(new window)

17.
Hutter, J. L.; Bechhoefer, J. Rev. Sci. Instrum. 1993, 64, 1868. crossref(new window)

18.
Rubio-Bollinger, G.; Bahn, S. R.; Agraït, N.; Jacobsen, K. W.; Vieira, S. Phys. Rev. Lett. 2001, 87, 026101. crossref(new window)