Advanced SearchSearch Tips
Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand
Maldhure, A. K.; Pethe, G. B.; Yaul, A. R.; Aswar, A. S.;
  PDF(new window)
Unsymmetrical tetradentate Schiff base N-(2-hydroxy-5-methylacetophenone)-N'-(2-hydroxy acetophenone) ethylene diamine (H2L) and its complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, IR, electronic spectra and thermogravimetric analyses. 1H, 13C-NMR and FAB Mass spectra of ligand clearly indicate the presence of OH and azomethine groups. Elemental analyses of the complexes indicate that the metal to ligand ratio is 1:1 in all complexes. Infrared spectra of complexes indicate a dibasic quadridentate nature of the ligand and its coordination to metal ions through phenolic oxygen and azomethine nitrogen atoms. The thermal behavior of these complexes showed the loss of lattice water in the first step followed by decomposition of the ligand in subsequent steps. The thermal data have also been analyzed for the kinetic parameters by using Horowitz-Metzger method. The dependence of the electrical conductivity on the temperature has been studied over the temperature range 313-403 K and the complexes are found to show semiconducting behavior. XRD and SEM images of some representative complexes have been recorded. The antimicrobial activity of the ligand and its complexes has been screened against various microorganisms and all of them were found to be active against the test organisms. The Fe(III) and Ni(II) complex have been tested for the catalytic oxidation of styrene.
Tetradentate schiff base;Catalytic oxidation;Electrical conductivity;Antimicrobial activity;
 Cited by
Hunoor, R. S.; Patil, B. R.; Badiger, D. S.; Vadavi, R. S.; Gudasi, K. B.; Chandrashekhar, V. M.; Muchchandi, I. S. Spectrochim Acta Part A. 2010, 77, 838. crossref(new window)

Qingbao, S.; Xiaoli, W.; Yongmin, L.; Yongxiang, M. A. Polyhedron. 1994, 13, 2395. crossref(new window)

Samnani, P. B.; Bhattacharya, P. K.; Ganeshpure, P. A.; Koshy, V. J.; Satish, S. J. Mol.Catatalysis A: Chemical. 1996, 110, 89. crossref(new window)

Bermejo, M. R.; Gonzalez, A. M.; Fondo, M.; Garcia-Deibe, A. M.; Sanmartin, J.; Hoyos, O. L.; Watkinson, M. New. J. Chem. 2000, 24, 235. crossref(new window)

Maravel, V.; Ancel, J. E.; Meunier, B. J. Catal. 2002, 206, 349. crossref(new window)

Ganeshpure, P. A.; Sudalai, A.; Satish, S. Tetrahedron Letter. 1989, 30, 5929. crossref(new window)

Maurya, M. R.; Kumar, U.; Correia, I.; Adao, P.; Pessoa, J. C. Eur. J. Inorg. Chem. 2008, 4, 577.

Imanzadeh, G. H.; Eskandari, H. Ind. J. Chem. 2005, 44A, 1392.

Badwaik, V. B.; Aswar, A. S. Russ. J. Inorg. 2009, 54, 1611. crossref(new window)

Mendham, J.; Denney, R. C.; Barnes, J. D.; Thomas, M. J. K. Vogel’s Text. Quant. Anal., 6th Edn; Pearson Education: Singapore, 2004.

Sarkar, A. R.; Mandal, S. Synth React Inorg Met-Org Chem. 2000, 30, 1477. crossref(new window)

Singh, R. V.; Joshi, S. C.; Dwivedi, R. Phosphorus Sulfur Silicon Relat Elem. 2004, 179, 227. crossref(new window)

Gupta, K. C.; Sutar, A. K. J Mole Catal A: Chem. 2007, 272, 64. crossref(new window)

Maurya, M. R.; Khurana, S.; Schulzke, C.; Rehder, D. Eur. J. Inorg. Chem. 2001, 3, 779.

Aurel, P.; Doina, H.; Lonel, H.; Catalin, T. Rev Roumaine de Chime. 2008, 53, 177.

Boghaei, D. M.; Mohebi, S. Tetrahedron. 2002, 58, 5357. crossref(new window)

Baleizao, C.; Gigante, B.; Garcia, H.; Corma, A. J. Catal. 2004, 221, 77. crossref(new window)

Gullotti, M.; Pasini, A.; Fantucci, P.; Ugo, R.; Gillard, R. D. Gazz Chim Ital. 1972, 102, 855.

Joseph, A.; Joseph, B.; Narayana, B. J. Ind. Chem. Soc. 2008, 85, 479.

Koning, E. The Nephelauxetic Effect in Structure and Bonding, Springer, Verlag: New York. 1971; Vol. 9, p 175.

Chandra, S.; Verma, S.; Meera, P. J. Ind. Chem. Soc. 2008, 85, 896.

Patel, M. N.; Patel, J. R.; Sutaria, D. H. Synth React Inorg. Met-Org Chem. 1995, 25, 797. crossref(new window)

Dubey, R. K.; Dubey, U. K.; Mishra, C. M. Ind. J. Chem. 2008, 47A, 1208.

Lee, J. D. Blackwell Sci. Ltd., 5th edn. Oxford. 2004, p. 963.

Verma, R. K.; Verma, L.; Chandra, M. Ind. J. Chem. 2003, 42A, 2982.

Chaudhary, R. G.; Juneja, H. D.; Gharpure, M. P. J. Therm. Anal. Calorim. 2013, 112, 637. crossref(new window)

Horowitz, H. H.; Metzger, M. Anal. Chem. 1963, 35, 1464. crossref(new window)

Bansod, A. D.; Mahale, R. G.; Aswar, A. S. Rus. J. Inorg. Chem. 2007, 52, 879. crossref(new window)

Neelakantan, M. A.; Marriappan, S. S.; Dharmaraja, J.; Jeyakumar, T.; Muthukumaran, K. Spectrochimica Acta. 2008, A71, 628.

Sarkar, S.; Aydogdu, Y.; Dagdelen, F.; Bhaumik, B. B.; Dey, K. Material. Chem. Phys. 2004, 88, 357. crossref(new window)

Bolos, C. A.; Nikolov, G. S.; Ekateriniadou, L.; Kortsaris, A.; Kyriakidis, D. A. Metal-Base Drugs. 1998, 5, 323. crossref(new window)

Hamurcu, F.; Gunduzalp, A. B.; Cete, S.; Erk, B. Trans Met. Chem. 2008, 33, 137. crossref(new window)