Advanced SearchSearch Tips
Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment
Kwon, Do Hun; Jung, Young Hee; Kim, Yeong Il;
  PDF(new window)
The crystallization and morphology change of amorphous titanias by hydrothermal treatment have been investigated. The amorphous titanias were prepared by pure water hydrolysis of two different precursors, titanium tetraisopropoxide (TTIP) and TTIP modified with acetic acid (HOAc) and characterized prior to hydrothermal treatment. In order to avoid complicate situation, the hydrothermal treatment was performed in a single solvent water with and without strong acids at various temperatures. The effects of strong acid, temperature and time were systematically investigated on the transformation of amorphous titania to crystalline TiO2 under simple hydrothermal condition. Without strong acid the titanias were transformed into only anatase phase nanoparticle regardless of precursor type, temperature and time herein used (up to 250 ℃ and 48 hours). The treatment temperature and time effected only on the crystalline size, not on the crystal phase et al. However, it was clearly revealed that the strong acids such as HNO3 and HCl catalyzed the formation of rutile phase depending on temperature. HCl was slightly better than HNO3 in this catalytic activity. The morphology of rutile TiO2 formed was also a little affected by the type of acid. The precursor modifier, HOAc slightly reduced the catalytic activity of the strong acids in rutile phase formation.
TiO2;Anatase;Rutile;Hydrothermal treatment;Nanoparticle;Nanorod;
 Cited by
(a) Linsebigler, A. L.; Lu, G.; Yates, Jr. J. T. Chem. Rev. 1995, 95, 735, crossref(new window)

(b) Thomson, T. L.; Yates, Jr. J. T. Chem. Rev. 2006, 106, 4428. crossref(new window)

Fujishima, A.; Honda, K. Nature 1972, 238, 37. crossref(new window)

O’Regan, B.; Grätzel. M. Nature 1991, 353, 737. crossref(new window)

Kim, I. D.; Rothchild, A.; Lee, B. H.; Jo, S. M.; Tuller, H. L. Nano. Lett. 2006, 6, 2009. crossref(new window)

Werner, A.; Roos, A. Sol. Ener. Mater. Sol. Cells 2007, 91, 609. crossref(new window)

Choi, H.; Kim, Y. J.; Varma, R. S.; Dionysiou, D. D. Chem. Mater. 2006, 18, 5377. crossref(new window)

Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891 crossref(new window)

(a) Chen, H. Ma, J.; Zhao, Z.; Qi, L. Chem. Mater. 1995, 7, 663. crossref(new window)

(b) Wu, M.; Long, J; Huang, A.; Luo, Y. Langmuir 1999, 15, 8822. crossref(new window)

(c) Ovenstone, J.; Yanagisawa, K. Chem. Mater. 1999, 11, 2770. crossref(new window)

(d) Wang, C.-C.; Ying, J. Y. Chem. Mater. 1999, 11, 3113. crossref(new window)

(e) Yang, J.; Mei, S.; Ferreira, J. M. F. J. Am. Ceram. Soc. 2000, 83, 1361. crossref(new window)

(f) Yang, J.; Mei, S.; Ferreira, J. M. F. Mater. Sci. Eng. C 2001, 15, 183. crossref(new window)

(g) Wu, M.; Lin, G.; Chen, D.; Wang, G.; He, D.; Feng, S.; Xu, R. Chem. Mater. 2002, 14, 1974. crossref(new window)

(h) Anderson, M.; Österlund, L.; Ljungström, S.; Palmqvist, A. J. Phys. Chem. B 2002, 106, 10674. crossref(new window)

(i) Chae, S. Y.; Park, M. K.; Lee, S. K.; Kim, T. Y.; Kim, S. K.; Lee, W. I. Chem. Mater. 2003, 15, 3326. crossref(new window)

(j) Su. C.; Tseng, C.-M.; Chen, L.-F; You, B.-H.; Hsu, B.-C.; Chen, S.-S. Thin Solid Films 2006, 498, 259. crossref(new window)

(k) Li, J.-G.; Ishigaki, T.; Sun, X. J. Phys. Chem. C 2007, 111, 4969. crossref(new window)

Our study excludes the effect of alcoholic solvents for the precursor TTIP. Some studies showed that the content of water relative to the alcoholic solvent for Ti alcoxide was one of important factors to determining the size of synthesized TiO2 nanoparticles.

Tsai, M. T. J. Non-Cryst. Solids 2002, 298, 116. crossref(new window)

Colomer, M.; Velasco, M. Jurado, J. J. Sol-Gel Sci. Technol. 2006, 39, 211. crossref(new window)

Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: New York, 1996; p. 314.

Parra, R.; Góes, M. S.; Castro, M. S.; Longo, E.; Bueno, P. R.; Varela, J. A. Chem. Mater. 2008, 20, 143. crossref(new window)

JCPDS 86-1157.

The pressure was calculated as the sum of air and vapor pressure which depend on temperature, linearly and by Clausius-Clapeyron equation, respectively.

In order to eliminate pH dependence of structural evolution we used the acid amount enough to maintain pH nearly 0 before and after hydrothermal treatment.