JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Quantum Chemical Studies of Some Sulphanilamide Schiff Bases Inhibitor Activity Using QSAR Methods
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Quantum Chemical Studies of Some Sulphanilamide Schiff Bases Inhibitor Activity Using QSAR Methods
Baher, Elham; Darzi, Naser; Morsali, Ali; Beyramabadi, Safar Ali;
  PDF(new window)
 Abstract
The different calculated quantum chemical descriptors by DFT method were used for prediction of some sulphanilamide Schiff bases inhibitor activity as a binding constant (log K). Multiple linear regression (MLR) and artificial neural network (ANN) were employed for developing the useful quantitative structure activity relationship (QSAR) model. The obtained results presented superiority of ANN model over the MLR one. The offering QSAR model is very easy to computation and Physico-Chemically interpretable. Sensitivity analysis was used to determine the relative importance of each descriptor in ANN model. The order of importance of each descriptor according to this analysis is: molecular volume, molecular weight and dipole moment, respectively. These descriptors appear good information related to different structure of sulphanilamide Schiff bases can participate in their inhibitor activity.
 Keywords
Sulphanilamide Schiff bases;QSAR;DFT;
 Language
English
 Cited by
1.
Thermal decomposition and kinetic analyses of sulfonamide Schiff's bases in oxygen atmosphere - A comparative study, Chemical Data Collections, 2017, 9-10, 229  crossref(new windwow)
 References
1.
Supuran, C. T.; Winum, J. Y. (Eds.). Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications; John Wiley & Sons: U.S.A., 2009.

2.
Badger, M.; Price, G. Annu. Rev. Plant Physiol. Plant Mol. Bio. 1994, 45, 369. crossref(new window)

3.
Supuran, T. C.; Scozzafava, A.; Casini, A. Medicinal Research Reviews. 2003, 23, 146. crossref(new window)

4.
Eroglu, E. Int. J. Mol. Sci. 2008, 9, 181. crossref(new window)

5.
Eroğlu, E.; Türkmen, H.; Güler, S.; Palaz, S.; Oltulu, O. Int. J. Mol. Sci. 2007, 8, 145. crossref(new window)

6.
Agrawal, V. K.; Srivastava, S.; Khadikar, P. V.; Supuran, C.T. Bioorganic Medicinal Chemistry. 2003, 11, 5353. crossref(new window)

7.
Singh, S.; Supuran, C. T. J. Enzyme. Inhib. Med. Chem. 2014, 29, 449. crossref(new window)

8.
Qiu, H. Y.; Wang, Z. C.; Wang, P. F.; Yan, X. Q.; Wang, X.M.; Yang, Y. H.; Zhu, H. L. RSC Advances. 2014, 4, 39214. crossref(new window)

9.
Supuran, C. T.; Clare, B. W. Eur. J. Med. Chem. 1998, 33, 489. crossref(new window)

10.
Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb,M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci,B.; Petersson, G.; Wallingford, CT. 2009.

11.
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. crossref(new window)

12.
Becke, A. D. J. Chem. Phys. 1993, 98, 5648. crossref(new window)

13.
SPSS/PC, Statistical Package for IBMPC, Quiad software,Ontario, 1986.

14.
Fatemi, M. H.; Baher, E. SAR QSAR Environ. Res. 2009, 20, 77. crossref(new window)

15.
Patterson, D. W. Artificial Neural Networks: Theory and Applications; Prentice Hall: U.S.A., 1996.

16.
Bose, N. K; Liang, P. Neural Network-Fundamentals; McGraw-Hill: U.S.A., 1996.

17.
Beal, M. T.; Hagan, H. B.; Demuth, M. Neural Network Design; PWS: U.S.A., 1996.

18.
Jalali-Heravi, M.; Fatemi, M. H. Anal. Chim. Acta. 2000, 415, 95. crossref(new window)

19.
Nord, L. I.; Jacobsson, S. P. Chemom. Intell. Lab. Syst. 1998, 44, 153. crossref(new window)