Advanced SearchSearch Tips
Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31
Kim, Jihong; Choi, Dongwook; Park, Chankyu; Ryu, Kyoung-Seok;
  PDF(new window)
Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson`s disease. Hsp31 displays -binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.
Backbone chemical shift assignment;Hsp31;NMR;Per-deuteration;TROSY;
 Cited by
Backbone resonance assignments of the Escherichia coli 62 kDa protein, Hsp31, Biomolecular NMR Assignments, 2017, 11, 2, 159  crossref(new windwow)
B. D. Eisenhardt, Biomol. Concepts 4, 583 (2013)

K. Niforou, C. Cheimonidou, and I.P. Trougakos, Redox Biol. 2, 323 (2014) crossref(new window)

M. Mujacic, M. W. Bader, and F. Baneyx, Mol. Microbiol. 51, 849 (2004)

M. Mujacic, and F. Baneyx, Mol. Microbiol. 60, 1576 (2006) crossref(new window)

A. Battesti, N. Majdalani, and S. Gottesman, Annu. Rev. Microbiol. 65, 189 (2011) crossref(new window)

M. Mujacic, and F. Baneyx, Appl. Environ. Microbiol. 73, 1014 (2007) crossref(new window)

Y. Wei, D. Ringe, M. A. Wilson, and M. J. Ondrechen, PLoS Comput. Biol. 3, e10 (2007) crossref(new window)

P. M. Quigley, K. Korotkov, F. Baneyx, and W. G. Hol, Proc. Natl. Acad. Sci.U.S.A. 100, 3137 (2003) crossref(new window)

D. Choi, J. Kim, S. Ha, K. Kwon, E. H. Kim, H. Y. Lee, K. S. Ryu, and C. Park, FEBS J. 281, 5447 (2014) crossref(new window)

K. C. Giese, and E. Vierling, J. Biol. Chem. 277, 46310 (2002) crossref(new window)

E. Hilario, F. J. Martin, M. C. Bertolini, and L. Fan, J. Mol. Biol. 408, 74 (2011) crossref(new window)

D. Choi, K. S. Ryu, and C. Park, Biochim. Biophys. Acta. 1834, 621 (2013) crossref(new window)

K. Bankapalli, S. Saladi, S. S. Awadia, A. V. Goswami, M. Samaddar, and P. D'Silva, J. Biol. Chem. 290, 26491 (2015) crossref(new window)

K. P. Subedi, D. Choi, I. Kim, B. Min, and C. Park, Mol. Microbiol. 81, 926 (2011) crossref(new window)

Y. Zhao, D. Liu, W. D. Kaluarachchi, H. D. Bellamy, M. A. White, and R. O. Fox, Protein Sci. 12, 2303 (2003)

A. Biswas, and K. P. Das, Biochemistry 47, 804 (2008) crossref(new window)

H. Kim, I. Lee, J. Han, H. K. Cheong, E. H. Kim, and W. Lee, J. Kor. Mag. Reson. Soc. 19, 83 (2015) crossref(new window)

J. Fiaux, E. B. Bertelsen, A. L. Horwich, and K. Wuthrich, J. Biomol. NMR. 29, 289 (2004) crossref(new window)

V. Tugarinov, V. Kanelis, and L. E. Kay, Nat. Protoc. 1, 749 (2006) crossref(new window)

M. Jansson, Y. C. Li, L. Jendeberg, S. Anderson, G. T. Montelione, and B. Nilsson, J. Biomol. NMR. 7, 131 (1996)

F. W. Studier, Protein Expr. Purif. 41, 207 (2005) crossref(new window)

F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995)

T. D. Goddard and D. G. Kneller, Sparky 3, University of California, SanFransisco, CA.

S. C. Andrews, A. K. Robinson, and F. Rodriguez-Quinones, FEMS Microbiol. Rev. 27, 215 (2003) crossref(new window)

S. Banerjee, S. Paul, L. T. Nguyen, B. C. Chu, and H. J. Vogel, Metallomics (2016)

K. O. Lee, and J. Y. Suh, J. Kor. Mag. Reson. Soc. 19, 42 (2015) crossref(new window)

H. N. Moseley, D. Monleon, and G. T. Montelione, Methods Enzymol. 339, 91 (2001) crossref(new window)

A. Bahrami, A. H. Assadi, J. L. Markley, and H. R. Eghbalnia, PLoS Comput. Biol. 5, e1000307 (2009) crossref(new window)

C. A. MacRaild, and R. S. Norton, J. Biomol. NMR. 58, 155 (2014) crossref(new window)

Y. Shen, and A. Bax, J. Biomol. NMR. 48, 13 (2010) crossref(new window)

B. Han, Y. Liu, S. W. Ginzinger, and D. S. Wishart, J. Biomol. NMR. 50, 43 (2011) crossref(new window)

Y. S. Choi, E. H. Kim, and K. S. Ryu, J. Anal. Sci. Technol. 6, 1 (2015) crossref(new window)