Advanced SearchSearch Tips
NMR methods in fragment based drug discovery
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NMR methods in fragment based drug discovery
Lim, Jongsoo;
  PDF(new window)
Nuclear magnetic resonance (NMR) spectroscopy, owing to its ability to provide atomic level information on molecular structure, dynamics and interaction, has become one of the most powerful methods in early drug discovery where hit finding and hit-to-lead generation are mainly pursued. In recent years, drug discovery programs originating from the fragment-based drug discovery (FBDD) strategies have been widely incorporated into academia and industry in which a wide variety of NMR methods become an indispensable arsenal to elucidate the binding of small molecules onto bimolecular targets. In this review, I briefly describe FBDD and introduce NMR methods mainly used in FBDD campaigns of my company. In addition, quality control of fragment library and practical NMR methods in industrial aspect are discussed shortly.
FBDD;HTS;NMR;Fragment library quality control;
 Cited by
R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T. Garyantes, D. V. Green, R. P. Hertzberg, W. P. Janzen, J. W. Paslay, U. Schopfer, and G. S. Sittampalam, Nat. Rev. Drug Discov. 10, 3 (2011) crossref(new window)

S. B. Shuker, P. J. Hajduk, R. P. Meadows, and S. W. Fesik, Science 274, 5292 (1996)

W. P. Jencks, Proc. Natl. Acad. Sci. U S A. 78, 7 (1981)

C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Adv. Drug. Deliv. Rev. 46, 1-3 (2001) crossref(new window)

T. sMaurer, L. S. Garrenton, A. Oh, K. Pitts, D. J. Anderson, N. J. Skelton, B. P. Fauber, B. Pan, S. Malek, D. Stokoe, M. J. Ludlam, K. K. Bowman, J. Wu, A. M. Giannetti, M. A. Starovasnik, I. Mellman, P. K. Jackson, J. Rudolph, W. Wang, and G. Fang, Proc. Natl. Acad. Sci. U S A. 109, 14 (2012)

Q. Sun, J. P. Burke, J. Phan, M. C. Burns, E. T. Olejniczak, A. G. Waterson, T. Lee, O. W. Rossanese, and S. W. Fesik, Angew. Chem. Int. Ed. Engl. 51, 25 (2012)

H. Chen, X. Zhou, A. Wang, Y. Zheng, Y. Gao, and J. Zhou, Drug Discov. Today 20, 1 (2015)

M. Pellecchia, D. S. Sem, and K. Wuthrich, Nat. Rev. Drug Discov. 1, 3 (2002) crossref(new window)

M. Mayer and B. Meyer, Angewandte Chemie International Edition 38, 12 (1999)

C. Dalvit, P. Pevarello, M. Tato, M. Veronesi, A. Vulpetti, and M. Sundstrom, J.Biomol.NMR 18, 1 (2000) crossref(new window)

J. B. Jordan, L. Poppe, X. Xia, A. C. Cheng, Y. Sun, K. Michelsen, H. Eastwood, P. D. Schnier, and T. Nixey, W. Zhong, J.Med.Chem. 55, 2 (2012) crossref(new window)

C. Dalvit, M. Flocco, M. Veronesi, and B. J. Stockman, Comb.Chem.High Throughput Screen 5, 8 (2002)

L. Oster, S. Tapani, Y. Xue, and H. Kack, Drug Discov.Today 20, 9 (2015)

C. Aguirre, T. t. Brink, J.-F. Guichou, O. Cala, and I. Krimm, PLoS One 9, 7 (2014)

M. Mayer and B. Meyer, Journal of the American Chemical Society 123, 25 (2001)

J. Baell and M. A. Walters, Nature 513, 7519 (2014)

S. R. Laplante, R. J. Carson, J. R. Gillard, N. Aubry, R. Coulombe, S. Bordeleau, P. R. Bonneau, M. Little, J. A. Omeara, and P. L. Beaulieu, J. Med. Chem. (2013)

D. M. Dias and A. Ciulli, Prog. Biophys. Mol. Biol. 116, 2-3 (2014)

J. Y. Guan, P. H. Keizers, W. M. Liu, F. Lohr, S. P. Skinner, E. A. Heeneman, H. Schwalbe, M. Ubbink, and G. Siegal, J. Am. Chem. Soc. 135, 15 (2013)

C. Aguirre, T. ten Brink, O. Walker, F. Guilliere, D. Davesne, and I. Krimm, PLoS One 8, 5 (2013)