Advanced SearchSearch Tips
Effect of Acylation on the Structure of the Acyl Carrier Protein P
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Acylation on the Structure of the Acyl Carrier Protein P
Hyun, Ja-shil; Park, Sung Jean;
  PDF(new window)
Acyl carrier protein is related with fatty acid biosynthesis in which specific enzymes are involved. Especially, acyl carrier protein (ACP) is the key component in the growing of fatty acid chain. ACP is the small, very acidic protein that covalently binds various intermediates of fatty acyl chain. Acylation of ACP is mediated by holo-acyl carrier protein synthase (ACPS), which transfers the 4`PP-moiety of CoA to the 36th residue Ser of apo ACP. Acyl carrier protein P (ACPP) is one of ACPs from Helicobacter plyori. The NMR structure of ACPP consists of four helices, which were reported previously. Here we show how acylation of ACPP can affect the overall structure of ACPP and figured out the contact surface of ACPP to acyl chain attached during expression of ACPP in E. coli. Based on the chemical shift perturbation data, the acylation of ACCP seems to affect the conformation of the long loop connecting helix I and helix II as well as the second short loop connecting helix II and helix III. The significant chemical shift change of Ile 54 upon acylation supports the contact of acyl chain and the second loop.
Acyl carrier protein;ACPP;Acylation;fatty acid biosynthesis;Structure;NMR;
 Cited by
Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals,;;

한국자기공명학회논문지, 2016. vol.20. 3, pp.76-81 crossref(new window)
Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals, Journal of the Korean Magnetic Resonance Society, 2016, 20, 3, 76  crossref(new windwow)
C.O. Rock, S. Jackowski, and J. E. Cronan, in Biochemistry of Lipids and Lipoproteins and Membranes (Vance, E.E., and Vance, J., Eds.) pp 35-74, Elsevier, Amsterdam (1996)

L. Tang, A. C. Weissborn, and E. P. Kennedy, J. Bacteriol. 179, 3697 (1997) crossref(new window)

J.-P. Issartl, V. Koronakis, and C. Hughes, Nature 351, 759 (1991) crossref(new window)

B. Shen, R. G. Summers, H. Gramajo, M. J. Bibb, and C. R. Hutchinson, J. Bacteriol. 174, 3818 (1992) crossref(new window)

O. Geiger, H. P. Spaink, and E. P. Kennedy, J. Bacteriol. 173, 2872 (1991) crossref(new window)

B. T. Vandem and J. E. Cronan, Annu. Rev. Microbiol. 43, 317 (1989) crossref(new window)

P. J. Jones, T. A. Holak, and J. H. Prestegard, Biochemistry 26, 3493 (1987) crossref(new window)

C. O. Rock and J. E. Cronan, 254, 9778 (1979)

J. E. Cronan, J. Biol. Chem. 257, 5013 (1982)

C. O. Rock, J. E. Cronan, and I. M. Armitage, J. Biol. Chem. 256, 2669 (1981)

D. H. Keating and J. E. Cronan, J. Biol. Chem. 271, 15905 (1996) crossref(new window)

A. S. Flaman, J. M. Chen, S. C. Van Iderstine, and D. M. Byers, J. Biol. Chem. 276, 35934 (2001) crossref(new window)

M.-M. Keating, H. Gong, and D. M. Byers, Biochem. Biophy. Acta. 1601, 208 (2002)

Y. Kim, and J. H. Prestegard, Biochemistry 28, 8792 (1989) crossref(new window)

K. H. Mayo, and J. H. Prestegard, Biochemistry 24, 7834 (1985) crossref(new window)

T. A. Holak, M. Nilges, J. H. Prestegard, A. M.Gronenborn, and G. M. Clore, Eur. J. Biochem. 175, 9 (1988) crossref(new window)

Y. Kim, and J. H. Prestegard, Proteins 8, 377 (1990) crossref(new window)

M. P. Crump, J. Crosby, C. E. Dempsey, J. A. Parkinson, M. Murray, D. A. Hopwood, and T. J. Simpson, Biochemistry 36, 6000 (1997) crossref(new window)

G-Y. Xu, A. Tam, L. Lin, J. Hixon, C. C. Fritz, and R. Powers, Structure 9, 277 (2001) crossref(new window)

A. Roujeinikova, C. Baldock, W. J. Simson, J. Gilroy, P. J. Baker, A. R. Stuitje, D. W. Rice, A. R. Slabas, and J. B. Rafferty, Structure 10, 825 (2002) crossref(new window)

H. C. Wong, G. Liu, Y.-M. Zhang, C. O. Rock, and J. Zheng, J. Biol. Chem. 277, 15874 (2002) crossref(new window)

K. D. Parris, L. Lin, A.Tam, R. Mathew, J. Hixon, M. Stahl, C. C. Fritz, J. Seehra, and W. S. Somers, Structure 8, 883 (2000) crossref(new window)

Y.-M. Zhang, M. S. Rao, R. J. Heath, A. C. Price, A. J. Olson, C. O. Rock, and S. W. White, J. Biol. Chem. 276, 8231 (2001) crossref(new window)

S. J. Park, J. S. Kim, W. S. Son, and B. J. Lee. J. Biochem. 135, 337 (2004) crossref(new window)

D. S. Wishart, B. D. Sykes, and F. M. Richards, Biochemistry 31, 1647 (1992) crossref(new window)

F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR 6, 277 (1995)

H.-H. Kim, H.-K. Song, B.-J. Lee, and S. J. Park, J. Kor. Mag. Reson. Soc. 16, 2 (2015)

S. J. Park, J. Kor. Mag. Reson. Soc. 18, 2 (2014)

C. Nguyen, R. W. Haushalter, D. J. Lee, P. R. L. Markwick, J. Bruegger, G. Caldara-Festin, K. Finzel,D. R. Jackson, F. Ishikawa, B. O'Dowd, J. A. McCammon, S. J. Opella, S.-C. Tsai, and M. D. Burkart, Nature 505, 427 (2014) crossref(new window)