JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Study of molecular motion by 1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4 single crystals
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Study of molecular motion by 1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4 single crystals
Park, Sung Soo;
  PDF(new window)
 Abstract
The proton NMR line widths and spin-lattice relaxation rates, , of ferroelectric , , and single crystals were measured as a function of temperature. The line width measurements reveal rigid lattice behavior of all the crystals at low temperatures and line narrowing due to molecular motion at higher temperatures. The temperature dependences of the proton for these crystals exhibit maxima, which are attributed to the effects of molecular motion by the Bloembergen - Purcell - Pound theory. The activation energies for the molecular motions of in these crystals were obtained. From these analysis, in undergoes molecular motion more easily than in and crystals.
 Keywords
Ferroelectrics;Crystal growth;Nuclear magnetic resonance;Ferroelectricity;Crystal growth;Nuclear magnetic resonance and relaxation;
 Language
English
 Cited by
 References
1.
P. Colomban and A. Novak, Anhydrous Materials, Oxonium Perchlorate, Acid Phosphates, Arsenates, Sulphates and Selenates in Proton Conductors, Cambridge University Press, Great Britain. 1992.

2.
R. Kubo and K. Tomita, J. Phys. Soc. Japan. 9, 888 (1954) crossref(new window)

3.
G. Burns, Phys. Rev. 123, 64 (1961) crossref(new window)

4.
S. R. Miller, R. Blinic, M. Brenman, and J. S. Waugh, Phys. Rev. 126, 528 (1962) crossref(new window)

5.
A. R. Lim, J. K. Jung, and S.Y. Jeong, Solid State Commun. 118, 453 (2001) crossref(new window)

6.
J. L. Koenig, In Spectroscopy of Polymers, Elsevier Science Inc., New York, (1999)

7.
N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev. 73, 679 (1948) crossref(new window)

8.
A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, Oxford, (1989)

9.
A. R. Lim and K.-S. Lee, J. Kor. Mag. Reson. Soc. 19, 29 (2015) crossref(new window)

10.
S. J. Lee and A.R. Lim, J. Kor. Mag. Reson. Soc. 19, 18 (2015) crossref(new window)

11.
A. A. Silvidi, J. Chem. Phys. 48, 1402 (1968) crossref(new window)

12.
C. P. Slicher, Principles of Magnetic Resonance, Springer-Verlag, New York (1989)

13.
B. Cowan, Nuclear Magnetic Resonance and Relaxation, Cambridge University Press, Cambridge, (1997)

14.
R. Ikeda and C. A. McDowell, Molecular Physics 25, 1217 (1973) crossref(new window)

15.
J. A. Ripmeester and N. S. Dalal, Phys. Rev. B. 18, 3739 (1978) crossref(new window)

16.
D. F. Holcomb and B. Pedersen, J. Chem. Phys. 36, 3270 (1962) crossref(new window)

17.
J. D. Cuthbert and H. E. Petch, Can. J. Phys. 41, 1629 (1963) crossref(new window)

18.
W. D. MacClement, M. Pintar, and H. E. Petch, Can. J. Phys. 45, 3257 (1967) crossref(new window)

19.
R. R. Knispel and H. E. Petch, Can. J. Phys. 49, 870 (1971) crossref(new window)