Advanced SearchSearch Tips
Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River
Kim, Bo-A; Koh, Dong-Chan; Ha, Kyoochul;
  PDF(new window)
Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.
Alluvial groundwater;Suspended particles;Dissolved constituents;Colloids;filtration;
 Cited by
Batley, G.E. and Gardner, D., 1977, Sampling and storage of natural waters for trace metal analysis, Water Research, 11(9), 745- 756. crossref(new window)

Choi, H.C., Kim, K.S., and Chang, Y.Y., 1997, Modeling colloidal contaminant transport in unsaturated porous media, Proceedings of 1997 Spring Meeting of Korea society of soil and groundwater environment, Sejong University, 112-115.

Danielsson, L.G., 1982, On the use of filters for distinguishing between dissolved and particulate fractions in natural waters, Water Res., 16(2), 179-182. crossref(new window)

Degueldre, C., Pfeiffer, H.-R., Alexander, W., Wernli, B., and Bruetsch, R., 1996a, Colloid properties in granitic groundwater systems. I: Sampling and characterisation, Appl. Geochem., 11(5), 677-695. crossref(new window)

Hamm, S.-Y., Cheong, J.-Y., Ryu, S.M., Kim, M.J., and Kim, H.-S., 2002, Hydrogeological characteristics of bank storage area in Daesan-myeon, Changwon City, Korea, J. Geol. Soc. Korea, 50(2), 231-240.

Hem, J.D. and Roberson, C.E., 1967, Form and stability of aluminum hydroxide complexes in dilute solution, US Geol. Surv. Water Supply Pap. 1827-A, Washington, D.C.

Hyun, S.P., Moon, H.S., Yoon, P., Kim, B., and Ha, K., 2013, Iron extraction characteristics of sediment samples from a river bank filtration site, J. Miner. Soc. Korea, 26(2), 129-138. crossref(new window)

Jung, E.C., Cho, H.R., Park, M.R., and Baik, M.H., 2011, Detection of colloidal nanoparticles in KURT groundwater by a mobile laser-induced breakdown detection system, J. Korean Radioact. Waste Soc., 9(1), 41-48. crossref(new window)

Kennedy, V.C., Zellweger, G.W., and Jones, B.F., 1974, Filter pore-size effects on the analysis of Al, Fe, Mn, and Ti in water, Water Resour. Res., 10(4), 785-790. crossref(new window)

Lead, J.R. and Wilkinson, K.J., 2006, Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem., 3(3), 159-171. crossref(new window)

Lee, S.I., Kim, D.-H., Lee, S.-S, and You, S.-Y., 2006, Transport of colloids and contaminant in riverbank filtration, J. Korean. Water Resour. Assoc., 39(6), 511-520. crossref(new window)

Shiller, A.M. and Boyle, E.A., 1987, Variability of dissolved trace metals in the mississippi river, Geochim. Cosmochim. Acta., 51(1), 3273-3277. crossref(new window)

Shiller, A.M., 2003, Syringe filtration methods for examing dissolved and colloidal trace element distributions in remote field locations, Environ. Sci, Technol., 37(17), 3953-3957. crossref(new window)

Taylor, H.E., Garbarino, J.R., and Brinton, T.I., 1990, The occurrence and distribution of trace metals in the Mississippi River and its tributaries, Sci. Total Environ., 97-98, 369-384.

Waber, U.E., Lienert, C., and Von Gunten, H.R., 1990, Colloidrelated infiltration of trace metals from a river to shallow groundwater, J. Contam. Hydrol., 6(3), 251-265. crossref(new window)

Wagemann, R. and Brunskill, G.j., 1975, The effect of filter pore-size on analytical concentrations of some trace elements in filtrates of natural water, Intern. J. Environ. Anal. Chem., 4(1), 75-84. crossref(new window)

Yim, S.S., Kwon, Y.D., and Kim, H.I., 2001, Effects of pore size, suspension concentration, and pre-sedimentation on the measurement of filter medium resistance in cake filtration, Korean J. Chem. Eng., 18(5), 741-749. crossref(new window)