JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Reduction of RDX in Ground Water by Bio-Regenerated Iron Mineral: Results of Field Verification Test at a Miliary Shooting Range
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Reduction of RDX in Ground Water by Bio-Regenerated Iron Mineral: Results of Field Verification Test at a Miliary Shooting Range
Gong, Hyo-young; Lee, Kwang-pyo; Lee, Jong-yeol; Kyung, Daeseung; Lee, Woojin; Bae, Bumhan;
  PDF(new window)
 Abstract
This study investigates the in-situ implementation of bio-regenerated iron mineral catalyst to remove explosive compounds in ground water at a military shooting range in operation. A bio-regenerated iron mineral catalyst was synthesized using lepidocrocite (iron-bearing soil mineral), iron-reducing bacteria Shewanella putrefaciens CN32, and electron mediator (riboflavin) in the culture medium. This catalyst was then injected periodically in the ground to build a redox active zone acting like permeable reactive barrier through injection wells constructed at a live fire military shooting range. Ground water and core soils were sampled periodically for analysis of explosive compounds, mainly RDX and its metabolites, along with toxicity analysis and REDOX potential measurement. Results suggested that a redox active zone was formed in the subsurface in which contaminated ground water flows through. Concentration of RDX as well as toxicity (% inhibition) of ground water decreased in the downstream compared to those in the upstream while concentration of RDX reduction products increased in the downstream.
 Keywords
Electron transfer mediator;Iron reducing bacteria;Lepidocrocite;RDX;TNX;
 Language
Korean
 Cited by
 References
1.
Adrian, N.R. and Arnett, C.M., 2004, Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-trazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture, Curr. Microbiol., 48, 332-340. crossref(new window)

2.
Ahmad, I., Fasihullah, Q., Noor, A., Ansari, I.A., and Ali, Q.N.M., 2004, Photolysis of riboflavin in aqueous solution: a kinetic study, Int. J. Pharm., 280, 199-208. crossref(new window)

3.
Bae, S. and Lee, W., 2012, Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(II), Geochim. Cosmochim. Acta, 85, 170-186. crossref(new window)

4.
Bae, S. and Lee, W., 2013, Biotransformation of lepidocrocite in the presence of quinonesand flavins, Geochim. Cosmochim. Acta, 114, 144-155. crossref(new window)

5.
Bae, S., Lee, Y., Kwon, M., and Lee, W., 2014, Riboflavinmediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite, J. Hazard. Mater., 274, 24-31. crossref(new window)

6.
Bhushan, B., Halasz, A., and Hawari, J., 2006, Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on bio-degradation of cyclic nitramines by Clostridium sp. EDB2, J. Appl. Microbiol., 100, 555-563. crossref(new window)

7.
Boopathy, R., Gurgas, M., Ullian, J., and Manning, J.F., 1998, Metabolism of explosive compounds by sulfate-reducing bacteria, Curr. Microbiol., 37, 127-131. crossref(new window)

8.
Borch, T., Inskeep, W.P., Harwood, J.A., and Gerlach, R., 2005, Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram positive fermenting bacterium, Environ. Sci. Technol., 39, 7126-7133. crossref(new window)

9.
Cho, C., Bae, S., and Lee, W., 2012, Enhanced degradation of TNT and RDX by bio-reducediron bearing soil minerals, Adv. Environ. Res., 1, 1-14. crossref(new window)

10.
Cui, H., Hwang, H.M., Cook, S., and Zeng, K., 2001, Effect of photosensitizer riboflavin on the fate of 2,4,6-trinitrotoluene in a freshwater environment, Chemosphere, 44, 621-625. crossref(new window)

11.
Etnier, E.L., 1989, Water quality criteria for hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX), Requl. Toxicol. Pharmacol., 9(2), 147-157. crossref(new window)

12.
Gregory, K.B., Larese-Casanova, P., Parkin, G.F., and Scherer, M.M., 2004, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Fe(II) bound to magnetite, Environ. Sci. Technol., 38, 1408-1414. crossref(new window)

13.
Haas, R., Schreiber, I., Low, E.V., and Stork, G., 1990, Conception for the investigation of contaminated munition plants, J. Anal. Chem., 338, 41-45. crossref(new window)

14.
Kwon, M.J. and Finneran, K.T., 2006, Microbially mediated biodegradation of hexahydro-1,3,5 trinitro-1,3,5-triazine by extracellular electron shuttling compounds, Appl. Environ. Microbiol., 72, 5933-5941. crossref(new window)

15.
Kwon, M.J. and Finneran, K.T., 2008, Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) biodegradation kinetics amongst several Fe(III)-reducing genera, Soil Sediment. Contam., 17, 189-203. crossref(new window)

16.
Kwon, M.J. and Finneran, K.T., 2008, Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens, Biodegradation, 19, 705-715. crossref(new window)

17.
Kwon, M.J. and Finneran, K.T., 2009, Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) reduc-tion is concurrently mediated by direct electron transfer from hydroquinones and resulting biogenic Fe(II) formed during electron shuttle-amended biodegradation, Environ. Eng. Sci., 26, 961-971. crossref(new window)

18.
Larese-Casanova, P. and Scherer, M.M., 2008, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by green rusts, Environ. Sci. Technol., 42, 3975-3981. crossref(new window)

19.
Naja, G., Halasz, A., Thiboutot, S., Ampleman, G., and Hawari, J., 2008, Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles, Environ. Sci. Technol., 42, 4364-4370. crossref(new window)

20.
Spalding, R.F. and Fulton, J.W., 1988, Groundwater munition residues and nitrate near Grand Island, Nebraska, USA, J. Contam. Hydrol., 2, 139-153. crossref(new window)

21.
USEPA, 2007, SW-846 Method 8330A, Nitroaromatics and Nitramines by High Performance Liquid Chromatography, Revision 1.

22.
USEPA, 2012, Technical Fact Sheet ñ Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX); 505-F-11-010, Office of Soil Waste and Emergency Response, Washington, DC.

23.
Wanaratna, P., Christodoulatos, C., and Sidhoum, M., 2006, Kinetics of RDX degradation by zero-valent iron (ZVI), J. Hazard. Mater., 136, 68-74. crossref(new window)

24.
Yinon, J., 1990, Toxicity and Metabolism of Explosives, CRC Press, Boca Raton, FL.

25.
Zhang, B., Kendall, R.J., and Anderson, T.A., 2006, Toxicity of the explosive metabolites hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) to the earthworm Eisenia fetida, Chemosphere, 64(1), 86-95. crossref(new window)

26.
Zhao, J.S., Manno, D., and Hawari, J., 2008, Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome, Microbiology, 154, 1026-1037. crossref(new window)