Advanced SearchSearch Tips
Quantitative Comparison of the Photocatalytic Efficiency of TiO2 Nanotube Film and TiO2 Powder
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Quantitative Comparison of the Photocatalytic Efficiency of TiO2 Nanotube Film and TiO2 Powder
Jang, Jun-Won; Park, Sung Jik; Park, Jae-Woo;
  PDF(new window)
We compared the plausible reaction mechanism and quantitative efficiency of highly self-organized TiO2 nanotube (ntTiO2) film with TiO2 powder. Film was fabricated by electrochemical potentiostatic anodization of titanium thin film in an ethylene-glycol electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized water. Nanotubes with a pore size of 80-100 nm were formed by anodization at 60 V for 3 h. Humic acid (HA) was degraded through photocatalytic degradation using the ntTiO2 film. Pseudo first-order rate constants for 0.3 g of ntTiO2, 0.3 g TiO2 powder, and 1 g TiO2 powder were 0.081 min−1, 0.003 min−1, and 0.044 min−1, respectively. HA adsorption on the ntTiO2 film was minimal while adsorption on the TiO2 powder was about 20% based on thermogravimetric analysis. Approximately five-fold more normalized OH radicals were generated by the ntTiO2 film than the TiO2 powder. These quantitative findings explain why ntTiO2 film showed superior photocatalytic performance to TiO2 powder.
TiO2 nanotubes;Electrostatic anodization;Humic acid;Adsorption effect;Terephthalic acid;
 Cited by
Aromaa, M., Keskinen, H., Mäkelä and J.M., 2007, The effect of process parameters on the liquid flame spray generated titania nanoparticles, Biomol. Eng., 24, 543-548. crossref(new window)

Carotta, M.C., Gherardi, S., Malagù, C., Nagliati, M., Vendemiati, B., Martinelli, G., Sacerdoti, M., and Lesci, I.G., 2007, Comparison between titania thick films obtained through sol-gel and hydrothermal synthetic processes, Thin Solid Films, 515, 8339-8344. crossref(new window)

Choi, W., 2006, Pure and modified TiO2 photocatalysts and their environmental applications, Catal. Surv. Asia, 10, 16-28. crossref(new window)

Fujishima, A., Rao, T.N., and Tryk, D.A., 2000, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C-Photochem. Rev., 1, 1-21. crossref(new window)

Fujishima, A. and Zhang, X., 2006, Titanium dioxide photocatalysis: present situation and future approaches, C. R. Chim., 9, 750-760. crossref(new window)

Haga, Y., An, H., and Yosomiya, R., 1997, Photoconductive properties of TiO2 films prepared by the sol-gel method and its application, J. Mater. Sci., 32, 3183-3188. crossref(new window)

Hirakawa, T. and Nosaka, Y., 2002, Properties of O2- and OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions, Langmuir, 18, 3247-3254. crossref(new window)

Jang, J.W. and Park, J.W., 2011, Photocatalytic performance of TiO2 films produced with combination of oxygen-plasma and rapid thermal annealing, Thin Solid Films, 520, 193-198. crossref(new window)

Jang, J.W. and Park, J.W., 2014, Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction, J. Hazard. Mater., 273, 1-6. crossref(new window)

Jang, J.W., Jun, J.E., and Park, J.W., 2009, Fabrication of zero valent iron (ZVI) nanotube film via potentiostatic anodization and electroreduction, Water Sci. Technol., 59, 2503-2507. crossref(new window)

Karlinsey, R.L., 2005, Preparation of self-organized niobium oxide microstructures via potentiostatic anodization, Electrochem. Commun., 7, 1190-1194. crossref(new window)

Kim, L.J., Jang, J.W., and Park, J.W., 2014, Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst, Appl. Catal. B-Environ., 147, 973-979. crossref(new window)

Lee, W.J. and Smyrl, W.H., 2005, Zirconium oxide nanotubes synthesized via direct electrochemical anodization, Electrochem. Solid State Lett, 8, B7-B9. crossref(new window)

Li, X.Z., Li, F.B., Fan, C.M., and Sun, Y.P., 2002, Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode, Water Res., 36, 2215-2224. crossref(new window)

Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D.A., Murakami, T., and Fujishima, A., 2008, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol, J. Phys. Chem. C, 112, 253-259. crossref(new window)

Luyo, C., Fábregas, I., Reyes, L., Solís, J.L., Rodríguez, J., Estrada, W., and Candal, R.J., 2007, SnO2 thin-films prepared by a spray-gel pyrolysis: Influence of sol properties on film morphologies, Thin Solid Films, 516, 25-33. crossref(new window)

Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A., 2006, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 90, 2011-2075. crossref(new window)

Mukherjee, N., Paulose, M., Varghese, O.K., Mor, G.K., and Grimes, C.A., 2003, Fabrication of nanoporous tungsten oxide by galvanostatic anodization, J. Mater. Res., 18, 2296-2299. crossref(new window)

Nischk, M., Mazierski, P., Gazda, M., and Zaleska, A., 2014, Ordered TiO2 nanotubes: The effect of preparation parameters on the photocatalytic activity in air purification process, Appl. Catal. B-Environ., 144, 674-685. crossref(new window)

Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A., and Grimes, C.A., 2007, TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion, J. Phys. Chem. C, 111, 14992-14997. crossref(new window)

Quan, X., Zhao, Q., Tan, H., Sang, X., Wang, F., and Dai, Y., 2009, Comparative study of lanthanide oxide doped titanium dioxide photocatalysts prepared by coprecipitation and sol-gel process, Mater. Chem. Phys., 114, 90-98. crossref(new window)

Subba Ramaiah, K., and Sundara Raja, V., 2006, Structural and electrical properties of fluorine doped tin oxide films prepared by spray-pyrolysis technique, Appl. Surf. Sci., 253, 1451-1458. crossref(new window)

Tsuchiya, H. and Schmuki, P., 2005, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun., 7, 49-52. crossref(new window)

Wold, A., 1993, Photocatalytic properties of titanium dioxide (TiO2), Chem. Mat., 5, 280-283. crossref(new window)

Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M., and Lu, G.Q., 2009, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc., 131, 4078-4083. crossref(new window)

Yang, J.K. and Lee, S.M., 2006. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis, Chemosphere, 63, 1677-1684. crossref(new window)

Yang, S., Liu, Y., and Sun, C., 2006, Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution, Appl. Catal. A-Gen., 301, 284-291. crossref(new window)

Yun, D.M., Cho, H.H., Jang, J.W., and Park, J.-W., 2013, Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange, Water Res., 47, 1858-1866. crossref(new window)

Zhang, Z., Yuan, Shi, G., Fang, Y., Liang, L., Ding, H., and Jin, L., 2007, Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation, Environ. Sci. Technol., 41, 6259-6263. crossref(new window)