JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on Land Cover Map of UAV Imagery using an Object-based Classification Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Land Cover Map of UAV Imagery using an Object-based Classification Method
Shin, Ji Sun; Lee, Tae Ho; Jung, Pil Mo; Kwon, Hyuk Soo;
  PDF(new window)
 Abstract
The study of ecosystem assessment(ES) is based on land cover information, and primarily it is performed at the global scale. However, these results as data for decision making have a limitation at the aspects of range and scale to solve the regional issue. Although the Ministry of Environment provides available land cover data at the regional scale, it is also restricted in use due to the intrinsic limitation of on screen digitizing method and temporal and spatial difference. This study of objective is to generate UAV land cover map. In order to classify the imagery, we have performed resampling at 5m resolution using UAV imagery. The results of object-based image segmentation showed that scale 20 and merge 34 were the optimum weight values for UAV imagery. In the case of RapidEye imagery;we found that the weight values;scale 30 and merge 30 were the most appropriate at the level of land cover classes for sub-category. We generated land cover imagery using example-based classification method and analyzed the accuracy using stratified random sampling. The results show that the overall accuracies of RapidEye and UAV classification imagery are each 90% and 91%.
 Keywords
Object-based Classification;UAV;Land Cover;
 Language
Korean
 Cited by
 References
1.
Bernstein, L. S., Adler-Golden, S. M. and Sundberg, R. L., 2005, Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multiand hyperspectral imagery, Proc. of SPIE, SPIE, Vol. 5806, pp. 668-678.

2.
Burkhard, B., Kandziora, M., Hou, Y. and Muller, F., 2014, Ecosystem Service Potentials, Flows and Demands-Concepts for Spatial Localisation, Indication and Quantification, Landscape online, Vol. 34, pp. 1-32.

3.
Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P. and van den Belt, M., 1997, The value of the world's ecosystem services and natural capital, Nature, Vol. 387, pp. 253-260. crossref(new window)

4.
Dieter H., Werner Z., Gunter S. and Peter S., 2005. Monitoring of gas pipelines - a civil UAV application, Aircraft Engineering and Aerospace Technology, Vol. 77, pp. 352-360. crossref(new window)

5.
Daily, G. C. and Matson, P. A., 2008, Ecosystem services: From theory to implementation, Proc. of the National Academy of Sciences of the USA, National Academy of Sciences, Vol. 105, No. 28, pp. 9455-9456.

6.
Duro, D. C., Franklin, S. E. and Dube, M. G., 2012, A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery, Remote Sensing of Environment, Vol. 118, pp. 259-272. crossref(new window)

7.
Egoh, B., Reyers, B., Rouget, M., Richardson, D. M., Le Matire, D. C. and can Jaarsveld, A. S., 2008, Mapping ecosystem services for planning and management, Agriculture, Ecosystems and Environment, Vol. 127, pp. 135-140. crossref(new window)

8.
Eitel, J. U. H., Vierling, L. A., Livak, M. E., Long, D. S., Schulthess, U., Ager, A., Krofcheck, D. J. and Stoscheck, L., 2011, Broadband, red-edge information from satellite improves early stress detection in a New Mexico conifer woodland, Remote Sensing of Environment, Vol. 115, pp. 640-3646.

9.
Fiella, I. and Penueals, J., 1994, The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status, International Journal of Remote Sensing, Vol. 15, pp. 1459-1470. crossref(new window)

10.
Fuyi, T., Chun, B. B., Mat Jafri, M. Z., San, L. H., Abdullah, K. and Tahrin, M., 2012. Land cover/use mapping using multi-band imageries captured by Cropcam Unmanned Aerial Vehicle Autopilot(UAV) over Penang Island, Malaysia, Proc. of SPIE, SPIE, Vol. 8540, 85400S, pp.1-6.

11.
Herwitz, S. R., John, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., Lobitz, B. M., Leung, J. G., Gallmeyer, B. A., Aoyagi, M., Slye, R. E. and Brass, J. A., 2004. Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support, Computers and Electronics in Agriculture, Vol. 44, pp. 49-61. crossref(new window)

12.
Hassan, F. M., Lim, H. S. and Mat Jafri, M. Z., 2011, CropCam UAV for Land Use/Land Cover mapping over Penang Island, Malaysia, Pertanika Journal of Science & Technology, Vol. 19, No. S, pp. 69-76.

13.
Jin, X., 2012, Segmentation-based image processing system. U.S. Patent 8,260,048, filed Nov. 14, 2007, and issued Sept. 4, 2012.

14.
Jung, K. S., Kim, Y. S. and Oh, S. R., 2015, Technical Development of Flood Damage Estimation using UAV, Magazine of Korea water resources association, Vol. 48, No. 1, pp. 51-59.

15.
Kim, H. O. and Yeom, J. M., 2012, A study on object-based image analysis methods for land cover classification in agricultural areas, Journal of the Korean Association of Geographic Information Studies, Vol. 15, No. 4, pp. 26-41. crossref(new window)

16.
Kim, S. M., 2014, Study of the UAV for Application Plans and Landscape Analysis, Korea Institute of Traditional Landscape Architecture, Journal of the Korean Institute of Traditional Landscape Architecture, Vol. 32, No. 3, pp. 213-220.

17.
Lee, H. J., Ru, J. H. and Yu, Y. G., 2010, Extracting High Quality Thematic Information by Using High-Resolution Satellite Imagery, Journal of The Korean Society for GeoSpatial Information System, Vol. 18, No. 1, pp. 73-81.

18.
Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D. r., Chan, K. M. A., Daily, G. C., Goldstein, J., Kareiva, P. M., Lonsdorf, E., Naidoo, R., Ricketts, T. H. and Shaw, M. R., 2009, Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales, Frontiers in Ecology and the Environment, Vol. 7, No. 1, pp. 4-11. crossref(new window)

19.
Na, H. S. and Lee, J. S., 2014, Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do -, Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 2, pp. 121-135. crossref(new window)

20.
Na, S. I., Baek, S. C., Hong, S. Y., Lee, K. D. and Jang, K. C., 2015, A Study on the Application of UAV for the Onion and Garlic Growth Monitoring, Proc. of The Korean Society of Soil Science and Fertilizer, Korean Society of Soil Sciences and Fertilizer, p. 225.

21.
Park, J. J., Ku, J. Y. and Kim, B. S., 2007, Improvement of the Level-2 Land Cover Map with Satellite Image, The Journal of GIS Association of Korea, Vol. 15, No. 1, pp. 67-80.

22.
Redding, N. J., Crisp, D. J., Tang, D. and Newsam, G. N., 1999. An efficient algorithm for Mumfordsegmentation and its application to SAR imagery, in 'Digital Image Computing : Techniques & Applications (DICTA '99), pp. 35-41.

23.
Shin, J. S., Lee T. H., Jung P. M., Kwon, H. S. and Andy S. Choi, 2015, A Study on UAV Application for Mapping and Assessment of Ecosystem Services, Proc. of The Korean Society of GeoSpatial Information System, Korean Society for Geospatial Information System, pp. 163-164.

24.
Tallis, H. and Polasky, S., 2009, Mapping and Valuing Ecosystem Services as an Approach for Conservation and Natural-Resource Management, Annals of the New York Academy of Sciences, Vol. 1162, pp. 265-283. crossref(new window)

25.
Willemen, L., Verburg, P. H., Hein, L. and can Mensvoort, M. E. F., 2008, Spatial characterization of landscape functions, Landscape and Urban Planning, Vol. 88, pp. 34-43. crossref(new window)

26.
Zhu, C., Luo, J., Ming, D., Shen, Z. and Li. J., 2012. Method for generating SPOT natural-colour composite images based on spectrum machine learning, International Journal of Remote Sensing, Vol. 33, No. 4, pp. 1309-1324. crossref(new window)