JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island
Roh, Jae Young; Lee, Dong Ha; Suh, Yong Cheol;
  PDF(new window)
 Abstract
The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately . It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.
 Keywords
Height Datum;Height Datum Transformation Model;Geoid Model;TideBed System;Anmyeon Island;
 Language
Korean
 Cited by
 References
1.
Amante, C. and Eakins, B. W., 2009, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24.

2.
Amos, M. J. and Featherstone, W. E., 2009, Unification of New Zealand's Local Vertical Data: Iterative Gravimetric Quasigeoid Computations, Journal of Geodesy, Vol. 83, pp. 57-68. crossref(new window)

3.
Ardalan, A. A. and Safari, A., 2005, Global Height Datum Unification: A New Approach in Gravity Potential Space, Journal of Geodesy, Vol. 79, pp. 512-523. crossref(new window)

4.
Choo, H. S. and Kim, D. S., 2013, Tide and Tidal Currents Around the Archipelago on the Southwestern Waters of the South Sea, Korea, Journal of the Korean Society of Marine Environment & Safety, Vol. 19, No. 6, pp. 582-596. crossref(new window)

5.
Ekman, M., 1999, Using Mean Sea Surface Topography for the Determination of Height System Differences across the Baltic Sea, Marine Geodesy, Vol. 22, pp. 31-35. crossref(new window)

6.
Featherstone, W. E., 2000, Towards Unification of the Australian Height Datum between the Australian Mainland and Tasmania using GPS and the AUSGeoid98 Geoid Model, Geomat Res Australas, Vol. 73, pp. 33-54.

7.
Forsberg R., 1984, Terrain Corrections for Gravity Measurements, Master's thesis, University of Calgary, Canada.

8.
Forsberg, R., Tscherning, C. C. and Knudsen, P., 2003, An Overview Manual of the GRAVSOFT Geodetic Gravity Field Modelling Programs, Danish National Space Center, Denmark.

9.
Heiskanen, W. A. and Moritz, H., 1967, Physical Geodesy, W.H. Freeman and Co, USA.

10.
Hipkin, R. G., 2002, Vertical Datum defined by Wo = Uo: Theory and Practice of a Modern Height System, Proc. of 3rd meeting of the International Gravity and Geoid Commission, International Association of Geodesy, Thessaloniki, Greece, pp. 26-30.

11.
Huang, H., Yun, H. S., Lee, D. H. and Jeong, T. J., 2009, Accuracy Analysis of Ultra-high degree Earth Gravitational Model EGM2008 in South Korea, Journal of the Korean Society of Civil Engineers, Vol. 29, No. 1D, pp. 161-166.

12.
Jekeli, C., 2003, On Monitoring a Vertical Datum with Satellite Altimetry and Water-level Gauge Data on Large Lakes, Journal of Geodynamics, Vol. 77, pp. 447-453.

13.
Kim, Y. H., Huh, R., Han, J. S. and Lee, C. H., 2013, A Study on Improvement of Automatic Tide Correction System, Korean Journal of Hydrography, Vol. 2, No. 1, pp. 127-135.

14.
Korean Hydrographic and Oceanographic Agency (KHOA), 2015, Management and Improvement of TideBed System, Technical Report.

15.
Kuroishi, Y., Ando, H. and Fukuda, Y., 2002, A New Hybrid Geoid Model for Japan, GSIGEO2000, Journal of Geodesy, Vol. 76, pp. 428-436. crossref(new window)

16.
Lee, D. H., 2008, Development of High-Precision Hybrid Geoid Model in Korea, Doctoral thesis, Sungkyunkwan University, Korea.

17.
Lee, D. H., Yun, H. S., Hwang, J. S. and Suh, Y. C., 2012, Transformation Model of Vertical Datum between Land and Ocean Height System using the Precise Spirit Leveling Results, Journal of the Korean Society of Civil Engineers, Vol. 32, No. 4D, pp. 407-419. crossref(new window)

18.
Lee, D. H., Yun, H. S., Jung H. I., Cho, J. M., Cho, J. H., Jung W. C. and Hwang, J. S., 2013, Transformation of Vertical Datum Surface in the Coastal Area using Hybrid Geoid Models, Journal of Coastal Research, Special Issue No. 65, pp. 1427-1432.

19.
Lee D. H., Yun, H. S. and Suh Y. C., 2011, Comparison between FFT and LSC Method for the Residual Geoid Height Modeling in Korea, Journal of the Korean Society of Civil Engineers, Vol. 31, No. 2D, pp. 323-334.

20.
Lee, S. B. and Auh, S. C., 2015, Accuracy Analysis of GPS Ellipsoidal Height Determination in Accordance with the Surveying Conditions, Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 4, pp. 67-74.

21.
Lee, S. B., Kim, J. S. and Kim, C. Y., 2008, Evaluation of EGM2008 Earth Geopotential Model using GPS/leveling Data, Journal of the Korean Society for Geospatial Information Science, Vol. 16, No. 3, pp. 117-126.

22.
Nikolaidis, R., 2002, Observation of Geodetic and Seismic Deformation with the Global Positioning System, Doctoral thesis, University of California, USA.

23.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K., 2008, An Earth Gravitational Model to Degree 2160: EGM2008, Proc. of the ed. at the 2008 General Assembly of the European Geosciences Union, European Geosciences Union, Vienna, Austria, pp. 13-18.

24.
Rapp, R. H., 1995, A World Vertical Datum Proposal. Allgemeine Vermessungs-Nachrichten, Vol. 102, pp. 297-304.

25.
Rummel, R., 2000, Global Unification of Height Systems and GOCE, In: Sideris, M. G. (ed.), International Association of Geodesy Symposia: Gravity, Geoid and Geodynamics 2000, Springer-Verlag, Berlin, Germany, Vol. 123, pp. 15-20.

26.
Sacerdote, F. and Sanso, F., 2001, W0: A Story of the Height Datum Problem, In: Wiss. Arbeiten der Fachr. Vermessungswesen der Univ. Hannover Nr. 241, University of Hannover, Germany.

27.
Yun, H. S., 1999, Precision geoid determination by spherical FFT in and around the Korean peninsula. Earth Planets and Space, Vol. 51, pp. 13-18. crossref(new window)

28.
Zhang, L., Li, F., Chen, W. and Zhang, C., 2009, Height Data Unification between Shenzhen and Hong Kong using the Solution of the Linearized Fixed-Gravimetric Boundary Value Problem. Journal of Geodesy, Vol. 83, pp. 411-417. crossref(new window)