JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells
Jeong, Jiseon; Lee, Hyewon; Lee, Hoogil; Ryou, Myung-Hyun; Lee, Yong Min;
  PDF(new window)
 Abstract
The effects of electrolyte additives, lithium bis(oxalate)borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA), on high-temperature storage properties of /graphite are investigated with coin-type full cells. The 1 wt.% LiBOB-containing electrolyte showed the highest capacity retention after high temperature () storage for 20 days, 86.7%, which is about 5% higher than the reference electrolyte, 1.15M lithium hexafluorophosphate () in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume). This enhancement is closely related to the formation of semi-carbonate compounds originated from anions, thereby resulting in lower SEI thickness and interfacial resistance after storage. In addition, the 1 wt.% LiBOB-containing electrolyte also exhibited better cycle performance at 25 and than the reference electrolyte, which indicates that LiBOB is an effective additive for high-temperature performance of /graphite chemistry.
 Keywords
electrolyte additive;high temperature storage;lithium bis(oxalate) borate;solid electrolyte;interphase;
 Language
Korean
 Cited by
1.
Electrochemical Properties of Poly(Styrenesulfonate)-Carbon Composite Anode for Organic Rechargeable Battery, Journal of the Korean Electrochemical Society, 2016, 19, 4, 129  crossref(new windwow)
2.
Enhanced High-Temperature Performance of LiNi0.6Co0.2Mn0.2O2Positive Electrode Materials by the Addition of nano-Al2O3during the Synthetic Process, Journal of the Korean Electrochemical Society, 2016, 19, 3, 80  crossref(new windwow)
 References
1.
M. Armand and J.-M. Tarascon, 'Building better batteries' Nature, 451, 652 (2008). crossref(new window)

2.
B. Scrosati, J. Hassoun, and Y.-K. Sun, 'Lithium-ion batteries. A look into the future' Energy Environ. Sci., 4, 3287 (2011). crossref(new window)

3.
C. Liu, F. Li, L. P. Ma, and H. M. Cheng, 'Advanced materials for energy storage' Adv. Mater., 22, E28 (2010) crossref(new window)

4.
F. Conte, 'Battery and battery management for hybrid electric vehicles: a review' Elektrotechnik & Informationstechnik, 123, 424 (2006). crossref(new window)

5.
C. Chan, 'The state of the art of electric, hybrid, and fuel cell vehicles' Proc. IEEE, 95, 704 (2007). crossref(new window)

6.
E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, 'Energy storage devices for future hybrid electric vehicles' J. Power Sources, 168, 2 (2007). crossref(new window)

7.
S. Santee, A. Xiao, L. Yang, J. Gnanaraj, and B. L. Lucht, 'Effect of combinations of additives on the performance of lithium ion batteries' J. Power Sources, 194, 1053 (2009). crossref(new window)

8.
D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002). crossref(new window)

9.
T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, and Z. Ogumi, 'Suppression of an alkyl dicarbonate formation in Li-ion cells' J. Electrochem. Soc., 152, A2046 (2005). crossref(new window)

10.
L. Zhao, S. Okada, and J.-I. Yamaki, 'Effect of VC additive on MFA-based electrolyte in Li-ion batteries' J. Power Sources, 244, 369 (2013). crossref(new window)

11.
M. Lu, H. Cheng, and Y. Yang, 'A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells' Electrochim. Acta, 53, 3539 (2008). crossref(new window)

12.
M. Xu, W. Li, X. Zuo, J. Liu, and X. Xu, 'Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive' J. Power Sources, 174, 705 (2007). crossref(new window)

13.
J. Li, W. Yao, Y. S. Meng, and Y. Yang, 'Effects of vinyl ethylene carbonate additive on elevated-temperature performance of cathode material in lithium ion batteries' J. Phys. Chem. C, 112, 12550 (2008).

14.
L. Larush-Asraf, M. Biton, H. Teller, E. Zinigrad and D. Aurbach, 'On the electrochemical and thermal behavior of lithium bis (oxalato) borate (LiBOB) solutions' J. Power Sources, 174, 400 (2007). crossref(new window)

15.
M.-H. Ryou, G.-B. Han, Y. M. Lee, J.-N. Lee, D. J. Lee, Y. O. Yoon, and J.-K. Park, 'Effect of fluoroethylene carbonate on high temperature capacity retention of $LiMn_2O_4/graphite$ Li-ion cells' Electrochim. Acta, 55, 2073 (2010). crossref(new window)

16.
N. N. Sinha, J. Burns, and J. Dahn, 'Storage studies on Li/graphite cells and the impact of So-called SEI-forming electrolyte additives' J. Electrochem. Soc., 160, A709 (2013). crossref(new window)

17.
W. Lu, Z. Chen, H. Joachin, J. Prakash, J. Liu, and K. Amine, 'Thermal and electrochemical characterization of $MCMB/LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ using LiBOB as an electrolyte additive' J. power sources, 163, 1074 (2007). crossref(new window)

18.
H. Ota, K. Shima, M. Ue, and J.-I. Yamaki, 'Effect of vinylene carbonate as additive to electrolyte for lithium metal anode' Electrochim. Acta, 49, 565 (2004). crossref(new window)

19.
M.-H. Ryou, J.-N. Lee, D. J. Lee, W.-K. Kim, J. W. Choi, J.-K. Park, and Y. M. Lee, '2-(triphenylphosphoranylidene) succinic anhydride as a new electrolyte additive to improve high temperature cycle performance of $LiMn_2O_4/graphite$ Li-ion batteries' Electrochim. Acta, 102, 97 (2013). crossref(new window)

20.
A. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. Tarascon, and A. Shukla, 'Solution-combustion synthesized nanocrystalline $Li_4Ti_5O_{12}$ as high-rate performance Li-ion battery anode' Chem. Mater., 22, 2857 (2010). crossref(new window)

21.
T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, and S. M. Oh, 'Failure mechanisms of $LiNi_{0.5}Mn_{1.5}O_4$ electrode at elevated temperature' J. Power Sources, 215, 312 (2012). crossref(new window)

22.
J.-H. Kim, S. C. Woo, M.-S. Park, K. J. Kim, T. Yim, J.-S. Kim, and Y.-J. Kim, 'Capacity fading mechanism of $LiFePO_4$-based lithium secondary batteries for stationary energy storage' J. Power Sources, 229, 190 (2013). crossref(new window)

23.
T. Eriksson, A. M. Andersson, A. G. Bishop, C. Gejke, T. Gustafsson, and J. O. Thomas, 'Surface analysis of $LiMn_2O_4$ electrodes in carbonate-based electrolytes' J. Electrochemical Society, 149, A69 (2002). crossref(new window)

24.
K. Colbow, J. Dahn, and R. Haering, 'Structure and electrochemistry of the spinel oxides $LiTi_2O_4$ and $Li_{4/3}Ti_{5/3}O_4$' J. Power Sources, 26, 397 (1989). crossref(new window)

25.
E. Ferg, R. Gummow, A. De Kock, and M. Thackeray, 'Spinel anodes for lithium-ion batteries' J. Electrochem. Soc., 141, L147 (1994). crossref(new window)

26.
K. Zaghib, M. Armand, and M. Gauthier, 'Electrochemistry of anodes in solid-state Li-ion polymer batteries' J. Electrochem. Soc., 145, 3135 (1998). crossref(new window)

27.
R. Yazami and Y. F. Reynier, 'Mechanism of self-discharge in graphite-lithium anode' Electrochim. Acta, 47, 1217 (2002). crossref(new window)

28.
K. Abe, T. Hattori, K. Kawabe, Y. Ushigoe, and H. Yoshitake, 'Functional electrolytes triple-bonded compound as an additive for negative electrode' J. Electrochem. Soc., 154, A810 (2007). crossref(new window)

29.
A. Andersson, A. Henningson, H. Siegbahn, U. Jansson, and K. Edstrom, 'Electrochemically lithiated graphite characterised by photoelectron spectroscopy' J. power sources, 119, 522 (2003).

30.
K. Xu, U. Lee, S. Zhang, M. Wood, and T. R. Jow, 'Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes' Electrochem. solidstate lett., 6, A144 (2003). crossref(new window)

31.
Z. Chen, W. Lu, J. Liu, and K. Amine, '$LiPF_6/LiBOB$ blend salt electrolyte for high-power lithium-ion batteries' Electrochim. Acta, 51, 3322 (2006). crossref(new window)

32.
D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli and H. Cohen, 'A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures' J. Electrochem. Society, 143, 3809 (1996). crossref(new window)

33.
R. Dedryvere, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon, and D. Gonbeau, 'XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode' J. Electrochem. Soc., 152, A689 (2005). crossref(new window)

34.
Y. K. Kwon, W. Choi, H.-S. Choi, and J. K. Lee, 'Effect of lithium difluoro (oxalato) borate on $LiMn_2O_4$-activated carbon hybrid capacitors' Electron. Mater. Lett., 9, 751 (2013). crossref(new window)

35.
M. H. Ryou, Y. M. Lee, J. K. Park, and J. W. Choi, 'Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries' Adv. Mater., 23, 3066 (2011). crossref(new window)

36.
M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, and J. W. Choi, 'Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators' Adv. Energy Mater., 2, 645 (2012). crossref(new window)