JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Phase Formation Behavior and Charge-discharge Properties of Carbon-coated Li2MnSiO4 Cathode Materials for Lithium Rechargeable Batteries
Sun, Ho-Jung; Chae, Suman; Shim, Joongpyo;
  PDF(new window)
 Abstract
Carbon-coated powders as the active materials for the cathode were synthesized by planetary ball milling and solid-state reaction, and their phase formation behavior and charge-discharge properties were investigated. Calcination temperature and atmosphere were controlled in order to obtain the phase, which was active electrochemically, and the carbon-coated active material powders with near single phase could be fabricated. The particles of the synthesized powders were secondary particles composed of primary ones of about 100 nm size. The carbon incorporation was essential to enable the Li ions to be inserted and extracted from active materials, and the initial capacity of 192 mAh/g could be obtained in the active materials with 4.8 wt% of carbon.
 Keywords
;planetary ball mill;solid-state reaction;carbon-coating;cathode;lithium rechargeable battery;
 Language
Korean
 Cited by
 References
1.
T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H.-K. Song, "The current move of lithium ion batteries towards the next phase", Adv. Energy Mater., 2, 860 (2012). crossref(new window)

2.
B. Xu, D. Qian, Z. Wang, and Y. S. Meng, "Recent progress in cathode materials research for advanced lithium ion batteries" Mater. Sci. Eng. R, 73, 51 (2012). crossref(new window)

3.
M. S. Islam, R. Dominko, C. Masquelier, C. Sirisopanaporn, A. R. Armstrong, and P. G. Bruce, "Silicate cathodes for lithium batteries: alternatives to phosphates?", J. Mater. Sci., 21, 9811 (2011).

4.
R. J. Gummow and Y. He, "Recent progress in the development of $Li_2MnSiO_4$ cathode materials", J. Power Sources, 253, 315 (2014). crossref(new window)

5.
V. V. Politaev, A. A. Petrenko, V. B. Nalbandyan, B. S. Medvedev, and E. S. Shvetsova, "Crystal structure, phase relations and electrochemical properties of monoclinic $Li_2MnSiO_4$", J. Solid State Chem., 180, 1045 (2007). crossref(new window)

6.
L. Qu, S. Fang, L. Yang, and S. Hirano, "Synthesis and characterization of high capacity $Li_2MnSiO_4$/C cathode material for lithium-ion battery", J. Power Sources, 252, 169 (2014). crossref(new window)

7.
F. Wang, J. Chen, C. Wang, and B. Yi, "Fast sol-gel synthesis of mesoporous $Li_2MnSiO_4$/C nanocomposite with improved electrochemical performance for lithiumion batteries", J. Electroanal. Chem., 688, 123 (2013). crossref(new window)

8.
S. Liu, J. Xu, D. Li, Y. Hu, X. Liu, and K. Xie, "High capacity $Li_2MnSiO_4$/C nanocomposite prepared by sol-gel method for lithium-ion batteries", J. Power Sources, 232, 258 (2013). crossref(new window)

9.
I. Belharouak, A. Abouimrane, and K. Amine, "Structural and electrochemical characterization of $Li_2MnSiO_4$ cathode material", J. Phys. Chem. C, 113, 20733 (2009). crossref(new window)

10.
K. Gao, C.-S. Dai, J. Lv, and S.-D. Li, "Thermal dynamics and optimization on solid-state reaction for synthesis of $Li_2MnSiO_4$ materials", J. Power Sources, 211, 97 (2012). crossref(new window)

11.
V. Aravindan, K. Karthikeyan, K. S. Kang, W. S, Yoon, W. S. Kim, and Y. S. Lee, "Influence of carbon towards improved lithium storage properties of $Li_2MnSiO_4$ cathodes", J. Mater, Chem., 21, 2470 (2011). crossref(new window)

12.
M.P. Pechini, "Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor", US Patent No 3,330,697 (1967).

13.
R. Dominko, "$Li_2MSiO_4$ (M = Fe and/or Mn) cathode materials", J. Power Sources, 184, 462 (2008). crossref(new window)

14.
T. Muraliganth, K.R. Stroukoff, A. Manthiram, "On the energetic stability and electrochemistry of $Li_2MnSiO_4$ polymorphs", Chem. Mater., 22, 5754 (2010). crossref(new window)

15.
S. Zhang, C. Deng, F.L. Liu, Q. Wu, M. Zhang, F.L. Meng, H. Gao, "Impacts of in situ carbon coating on the structural, morphological and electrochemical characteristics of $Li_2MnSiO_4$ prepared by a citric acid assisted sol-gel method", J. Electroanal. Chem., 689, 88 (2013). crossref(new window)

16.
S. Won, K.-K. Lee, G. Park, H.-J. Sun, J.-C. An, J. Shim, "Physical and electrochemical characteristics of carbon content in carbon-coated $Li_2MnSiO_4$ for rechargeable lithium batteries", J. Appl. Electrochem., 45, 169 (2015). crossref(new window)

17.
A.R. West and F.P. Glasser, "Preparation and crystal chemistry of some tetrahedral $LiFePO_4$-type compounds", J. Solid State Chem., 4, 20 (1972). crossref(new window)

18.
C. Wang, B. Dou, Y. Song, H. Chen, M. Yang, Y. Xu, "Kinetic study on non-isothermal pyrolysis of sucrose biomass", Energy Fuels, 28, 3793 (2014). crossref(new window)

19.
Z. Chen, J. R. Dahn, "Reducing carbon in $LiFePO_4/C$ composite electrodes to maximize specific energy, volumetric energy, and tap density", J. Electrochem. Soc., 149, A1184 (2002) crossref(new window)

20.
J. Ying, M. Lei, C. Jiang , C. Wan, X. He, J. Li, L. Wang, J. Ren, "Preparation and characterization of high-density spherical $Li_{0.97}Cr_{0.01}FePO_4$/C cathode material for lithium ion batteries", J. Power Sources 158, 543 (2006). crossref(new window)

21.
R. Dominko, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik, "$Li_2MnSiO_4$ as a potential Li-battery cathode material", J. Power Sources, 174, 457 (2007). crossref(new window)