Advanced SearchSearch Tips
Electrolytic Reduction Characteristics of Titanium Oxides in a LiCl-Li2O Molten Salt
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrolytic Reduction Characteristics of Titanium Oxides in a LiCl-Li2O Molten Salt
Lee, Jeong; Kim, Sung-Wook; Lee, Sang-Kwon; Hur, Jin-Mok; Choi, Eun-Young;
  PDF(new window)
Experiments using a metal oxide of a non-nuclear material as a fuel are very useful to develop a new electrolytic reducer for pyroprocessing. In this study, the titanium oxides (TiO and ) were selected and investigated as the non-nuclear fuel for the electrolytic reduction. The immersion tests of TiO and in a molten 1.0 wt.% -LiCl salt revealed that they have solubility of 156 and 2100 ppm, respectively. Then, the Ti metals were successfully produced after the separate electrolytic reduction of TiO and in a molten 1.0 wt.% -LiCl salt. However, Ti was detected on the platinum anode used for the electrolytic reduction of unlike TiO due to the dissolution of into the salt.
titanium oxide;electrolytic reduction;LiCl;molten salt;
 Cited by
T. Nohira, K. Yasuda and Y. Ito, 'Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon' Nature Materials, 2, 397 (2003). crossref(new window)

K. Yasuda, T. Nohira, R. Hagiwara and Y. H. Ogata, 'Direct electrolytic reduction of solid $SiO_2$ in molten $CaCl_2$ for the production of solar grade silicon' Electrochim. Acta, 53, 106 (2007). crossref(new window)

S. M. Jeong, J. Y. Jung, C. S. Seo and S. W. Park, 'Characteristics of an electrochemical reduction of $Ta_2O_5$ for the preparation of metallic tantalum in a LiCl-$Li_2O$ molten salt' J. Alloy. Compd., 440, 210 (2007). crossref(new window)

X. Y. Yan and D. J. Fray, 'Production of Niobium Powder by Direct Electrochemical Reduction of Solid $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt' Metall. Mater. Trans. B, 33B, 685 (2002).

S. M. Jeong, H. Y. Yoo, J.-M. Hur and C.-S. Seo, 'Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl-$Li_2O$ molten salt' J. Alloy. Compd., 452, 27 (2008). crossref(new window)

S. I. Wang, G. M. Haarberg and E. Kvalheim, 'Electrochemical behavior of dissolved $Fe_2O_3$ in molten $CaCl_2$-KF' J. Iron Steel Res. Int., 15, 48 (2008). crossref(new window)

D. Wang, G. Qiu, X. Jin, X. Hu and G. Z. Chen, 'Electrochemical metallization of solid terbium oxide' Angew. Chem. Int. Edit., 45, 2384 (2006). crossref(new window)

Q. Xu, L.-Q. Deng, Y. Wu and T. Ma, 'A study of cathode improvement for electro-deoxidation of $Nb_2O_5$ in a eutectic $CaCl_2$-NaCl melt at 1073K' J. Alloy. Compd., 396, 288 (2005). crossref(new window)

G. Z. Chen, E. Gordo and D. J. Fray, 'Direct electrolytic preparation of chromium powder' Metall. Mater. Trans. B, 35B, 223 (2004).

E. Gordo, G. Z. Chen and D. J. Fray, 'Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts' Electrochim. Acta, 49, 2195 (2004). crossref(new window)

B. Claux, J. Serp and J. Fouletier, 'Electrochemical reduction of cerium oxide into metal' Electrochim. Acta, 56, 2771 (2011). crossref(new window)

G. Z. Chen, D. J. Fray and T. W. Farthing, 'Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride' Nature, 407, 361 (2000). crossref(new window)

C. Schwandt and D. J. Fray, 'Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride' Electrochim. Acta, 51, 66 (2005). crossref(new window)

I. Park, T. Abiko and T. H. Okabe, 'Production of titanium powder directly from $TiO_2$ in $CaCl_2$ through an electronically mediated reaction (EMR)' J. Phys. Chem. Solids., 66, 410 (2005). crossref(new window)

K. Jiang, X. Hu, H. Sun, D. Wang, X. Jing, Y. Ren and G. Z. Chen, 'Electrochemical synthesis of Li$TiO_2$ and $LiTi_2O_4$ in molten LiCl' Chem. Mater., 16, 4324 (2004). crossref(new window)

J.-M. Hur, S.-C. Lee, S.-M. Jeong and C.-S. Seo, 'Electrochemical reduction of $TiO_2$ in molten LiCl-$Li_2O$' Chem. Lett., 36, 1028 (2007). crossref(new window)

H.-S. Shin, J.-M. Hur, S. M. Jeong and K. Y. Jung, 'Direct electrochemical reduction of titanium dioxide in molten lithium chloride' J. Ind. Eng. Chem., 18, 438 (2012). crossref(new window)

K.-C. Song, H. Lee, J.-M. Hur, J.-K. Kim, D.-H. Ahn and Y.-Z. Cho, 'Status of pyroprocessing technology development in Korea' Nucl. Eng. Technol., 42, 131 (2010). crossref(new window)

S. D. Herrmann and S. X. Li, 'Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining' Nucl. Technol., 171, 247 (2010). crossref(new window)

K. M. Goff, J. C. Wass, K. C. Marsden and G. M. Teske, 'Electrochemical processing of used nuclear fuel' Nucl. Eng. Technol., 43, 335 (2011). crossref(new window)

E. J. Karell, K. V. Gourishankar, J. L. Smith, L. S. Chow and L. Redey, 'Separation of actinides from LWR spent fuel using molten-salt-based electrochemical processes' Nucl. Technol., 136, 342 (2001). crossref(new window)

E.-Y. Choi, J. W. Lee, J. J. Park, J.-M. Hur, J.-K. Kim, K. Y. Jung and S. M. Jeong, 'Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt' Chem. Eng. J., 207, 514 (2012).

E.-Y. Choi, J.-K. Kim, H.-S. Im, I.-K. Choi, S.-H. Na, J. W. Lee, S. M. Jeong and J.-M. Hur, 'Effect of the $UO_2$ form on the electrochemical reduction rate in a LiCl-$Li_2O$ molten salt' J. Nucl. Mater., 437, 178 (2013). crossref(new window)

E.-Y. Choi, C. Y. Won, J.-S. Cha, W. Park, H.-S. Im, S. S. Hong and J.-M. Hur, 'Electrochemical reduction of $UO_2$ in LiCl-$Li_2O$ molten salt using porous and nonporous anode shrouds' J. Nucl. Mater., 444, 261 (2014). crossref(new window)