Advanced SearchSearch Tips
Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries
Lim, Young Rok; Lim, SooA; Park, Jeunghee; Cho, Won Il; Lim, Sang Hoo; Cha, Eun Hee;
  PDF(new window)
High-yield zinc germanium oxide () and zinc tin oxide () nanowires were synthesized using a hydrothermal method. We investigated the electrochemical properties of these and nanowires as anode materials of lithium ion battery and sodium ion battery. The and nanowires showed excellent cycling performance of the lithium ion battery, with a maximum capacity of 1021 mAh/g and 692 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 98 %. For the first time, we examined the cycling performance of and nanowires for sodium ion batteries. The maximum capacity is 168 mAh/g and 200 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 97%. These nanowires are expected as promising electrode materials for the development of high-performance lithium ion batteries as well as sodium ion batteries.
Zinc germanium oxide;Zinc tin oxide;Hydrothermal method;Lithium ion battery;Sodium ion battery;
 Cited by
R. Z. Hu, H. Liu and J. W. Liu, Chin. Sci. Bull. 57, 4119 (2012). crossref(new window)

X. L. Wu, Y. G. Guo and L. J. Wan, Chem. Asian J. 8, 1948 (2013). crossref(new window)

J. D. Ocon, J. K. Lee and J. Lee, Appl. Chem. Eng. 25, 1 (2014). crossref(new window)

M. R. St. John, A. J. Furgala and A. F. Sammells, J. Electrochem. Soc. 129, 246 (1982). crossref(new window)

J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc.151, A698 (2004). crossref(new window)

R. A, Higgns, J. Power Sources. 81-82, 13 (1999). crossref(new window)

M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999). crossref(new window)

J.K. Feng, M.O. Lai and L. Lu, Electrochem Commun. 13, 287 (2011) crossref(new window)

R. Yi, J. Feng, D. Lv, M. L. Gordin, S. Chen, D. Choi and D. Wang, Nano Energy. 2, 498 (2013). crossref(new window)

F. Zou, X. Hu, Y. Sun, W. Luo, F. Xia, L. Qie, Y. Jiang and Y. Huang, Chem. Eur. J. 19, 6027 (2013). crossref(new window)

W. Li, X. Wang, B. Liu, J. Xu, B. Liang, T. Luo, S. Luo, D. Chen and G. Shen, Nanoscale. 5, 10291 (2013). crossref(new window)

F. Zou, X. Hu, L. Qie, Y. Jiang, X. Xiong, Y. Qiao and Y. Huang, Nanoscale. 6, 924 (2014). crossref(new window)

W. Chen, L. Lu, S. Maloney, Y. Yang and W. Wang, Phys. Chem. Chem. Phys. 17, 5109 (2015). crossref(new window)

A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu and D. Y. Song, J. Phys. Chem. B. 110, 14754 (2006). crossref(new window)

X. J. Zhu, L. M. Geng, F. Q. Zhang, Y. X. Liu and L. B. Cheng, J. Power. Sources. 189, 828 (2009). crossref(new window)

X. Hou, Q. Cheng, Y. Bai and W. F. Zhang, Solid State Ionics. 181, 631 (2010). crossref(new window)

S. M. Becker, M. Scheuermann, V. Sepelak, A. EichhOfer, D. Chen, R. MOnig, A. S. Ulrich, d. H. Hahnab and S. Indris, Phys. Chem. Chem. Phys. 13, 19624 (2011). crossref(new window)

N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu and D. He, Mater Lett. 76, 66 (2012). crossref(new window)

K. Kim, A. Annamalai, S. H. Park, T. H. Kwon, M. W. Pyeon, M. J. Lee, Electrochim Acta. 76, 192 (2012). crossref(new window)

W. Song, J. Xie, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Mater. Res. 28, 24 (2012).

X. Zheng, Y. Li, Y. Xu, Z. Hong and M. Wei, CrystEng Comm. 14, 2112 (2012). crossref(new window)

Y. Zhao, Y. Huang, Q. Wang, K. Wang, M. Zong, L. Wang, W. Zhang and X. Sun, RSC Adv. 3, 14480 (2013). crossref(new window)

C. T. Cherian, M. Zheng, M. V. Reddy, B. V. R. Chowdari, and C. H. Sow, ACS Appl. Mater. Interfaces. 5, 6054 (2013). crossref(new window)

W. Song, J. Xie, W. Hu, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Power. Sources. 229, 6 (2013). crossref(new window)

H. Huang, Y. Huang, M. Wang, X. Chen, Y. Zhao, K. Wang and H. Wu, Electrochim Acta. 147, 201 (2014). crossref(new window)

H. Fan, Z. Liu, J. Yang, C. Wei, J. Zhang, L. Wu and We. Zheng, RSC Adv. 4, 49806 (2014). crossref(new window)

Y. Zhao, Y. Huang, X. Sun, H. Huang, K. Wang, M. Zong and Q. Wang, Electrochim Acta. 120, 128 (2014). crossref(new window)

K Wang, Y. Huangn, H. Huang, Y. Zhao, X. Qin, X. Sun and Y. Wang, Ceram Int. 40, 8021 (2014). crossref(new window)

R. Zhang, Y. He and L. Xu, J. Mater. Chem. A. 2, 17979 (2014). crossref(new window)

K. Wang, Y. Huangn, T. Han, Y. Zhao, H. Huang and L. Xue, Ceram Int. 40, 2359 (2014). crossref(new window)

T. Jiang, X. Tian, H. Gu, H. Zhu and Y Zhou, J. Alloys Compd. 639, 239 (2015). crossref(new window)

C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y Zhang and Y. Guan, Mater Lett. 138, 120 (2015). crossref(new window)

L. Qin, S. Liang, A. Pan and X. Tan, Mater Lett. 141, 255 (2015). crossref(new window)

B. -Y. Wang, H. -Y. Wang, Y. -L. Ma, X. -H. Zhao, W. Qi and Q. -C. Jiang, J. Power. Sources. 281, 341 (2015). crossref(new window)

Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res. 48, 1657 (2015). crossref(new window)

L. Baggetto, J. K. Keum , J. F. Browning , G. M. Veith, Electrochem Commu. 34, 41 (2013). crossref(new window)

A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. M. Lotfabad, W. P. Kalisvaart and D. Mitlin, Nano Lett. 14, 5873 (2014). crossref(new window)

Y. Xu , Y. Zhu, Y. Liu and C. Wang, Adv. Energy Mater. 3, 128 (2013). crossref(new window)

D. -H. Nam, K. -S Hong, S. -J. Lim, T. -H. Kim and H.-S. Kwon, J. Phys. Chem. C. 118, 20086 (2014). crossref(new window)

J. Liu, Y. Wen, P. A. v. Aken, J. Maier and Y. Yu, Nano Lett. 14, 6387 (2014). crossref(new window)

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. Zou, J. Am. Chem. Soc. 132, 14385 (2010). crossref(new window)

Z. Li, Y. Zhou, C. Bao, G. Xue, J. Zhang, J. Liu, T. Yuab and Z. Zou, Nanoscale. 4, 3490 (2012). crossref(new window)