Advanced SearchSearch Tips
Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode
Kang, Joonsup; Nam, Kyung-Mo; Hwang, Eui-Hyeong; Kwon, Young-Gil; Song, Seung-Wan;
  PDF(new window)
Capacity of layered lithium nickel-cobalt-manganese oxide () cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. , but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.
Lithium-ion Battery; cathode;Sulfone additive;High-voltage;Surface film;
 Cited by
J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries', Chem. Mater., 22, 587 (2010). crossref(new window)

Y. Nishida, K. Nakane and T. Satoh, 'Synthesis and properties of gallium-doped $LiNiO_2$ as the cathode material for lithium secondary batteries', J. Power Sources, 68, 561 (1997). crossref(new window)

S. Yamada, M. Fujiwara and M. Kanda, 'Synthesis and properties of $LiNiO_2$ as cathode material for secondary batteries', J. Power Sources, 54, 209 (1995). crossref(new window)

P. Kalyani and N. Kalaiselvi, 'Various aspects of $LiNiO_2$ chemistry: A review', Sci. Technol. Adv. Mater., 6, 689 (2005). crossref(new window)

D. H. Jang, Y. J. Shin and S. M. Oh, 'Dissolution of spinel oxides and capacily losses in 4 V $Li/Li_xMn_2O_4$ cells', J. Electrochem. Soc., 143, 2204 (1996). crossref(new window)

A. R. Armstrong, A. J. Paterson, A. D. Robertson, and P. G. Bruce, 'Nonstoichiometric layered $Li_xMn_yO_2$ with a high capacity for lithium intercalation/deintercalation', Chem. Mater., 14, 710 (2002). crossref(new window)

T. Liu, S.-X. Zhao, K. Wang and C.-W. Nan, 'CuO-coated $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material with improved cycling performance at high rates', Electrochim. Acta, 85, 605 (2012). crossref(new window)

Y. Huang, F.-M. Jin, F.-J. Chen and L. Chen, 'Improved cycle stability and high-rate capability of $Li_3VO_4$-coated $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$ cathode material under different voltages', J. Power Sources, 256, 1 (2014). crossref(new window)

W. Liu, M. Wang, X. L. Gao, W. Zhang, J. Chen, H. Zhou and X. Zhang, 'Improvement of the hightemperature, high-voltage cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode with $TiO_2$ coating', J. Alloys Compds., 543, 181 (2012). crossref(new window)

Y. Bai, X. Wang, S. Yang, X. Zhang, X. Yang, H. Shu and Q. Wu, 'The effects of $FePO_4$-coating on high-voltage cycling stability and rate capability of $Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2$', J. Alloys Compds., 541, 125 (2012). crossref(new window)

J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li and F. Zhou, 'Ultrathin ZnO coating for improved electrochemical performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material', J. Power Sources, 266, 433 (2014). crossref(new window)

H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun, 'Comparison of the structural and electrochemical properties of layered $Li[Ni_xCo_yMn_z]O2$ (x =1/4 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries', J. Power Sources, 233, 121 (2013). crossref(new window)

M. Moshkovich, M. Cojocaru, H. E. Gottlieb and D. Aurbach, 'The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS', J. Electroanal. Chem., 497, 84 (2001). crossref(new window)

H.-K. Park, 'The research and development trend of cathode materials in lithium ion battery', J. Korean Electrochem. Soc., 11, 197 (2008). crossref(new window)

A. Abouimrane, I. Belharouak, and K. Amine, 'Sulfonebased electrolytes for high-voltage Li-ion batteries', Electrochem. Commun., 11, 1073 (2009). crossref(new window)

T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa and H. Aoyama, 'Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries', J. Electrochem. Soc., 156, A483 (2009). crossref(new window)

Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.-S. Kim and S.-W. Song, 'Interfacial origin of performance improvement and fade for 4.6 V $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ battery cathodes', J. Phys. Chem. C, 118, 10631 (2014).

H. Q. Pham, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, H. M, Jung and S.-W. Song, 'Performance enhancement of 4.8 V $Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$ battery cathode using fluorinated linear carbonate as a high-voltage additive', J. Electrochem. Soc., 161, A2002 (2014). crossref(new window)

Y. Watanabe, S. Kinoshita, S. Wada, K. Hoshino, H. Morimoto and S. Tobishima, 'Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells', J. Power Sources, 179, 770-779 (2008). crossref(new window)

K. Xu and C. A. Angell, 'High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone', J. Electrochem. Soc., 145, 70 (1998). crossref(new window)

N. Shao, X. Sun, S. Dai and D. Jiang, 'Oxidation potentials of functionalized sulfone solvents for highvoltage Li-ion batteries: A computational study', J. Phys. Chem., 116, 3235 (2012). crossref(new window)

K. Xu and C. A. Angell, 'Sulfone-based electrolytes for lithium-ion batteries', J. Electrochem. Soc., 149, A920 (2002). crossref(new window)

S. Tan, Y. J. Ji, Z. R. Zhang, and Y. Yang, 'Recent progress in research on high-voltage electrolytes for lithium-ion batteries', Chem phys chem, 15, 1956 (2014). crossref(new window)

L. Xue, S.-Y. Lee, Z. Zhao and C. A. Angell, 'Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries', J. Power Sources, 295, 190 (2015). crossref(new window)

R. Wagner, S. Brox, J. Kasnatscheew, D. R. Gallus, M. Amereller, I. Cekic-Laskovic and M. Winter, 'Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries', Electrochem. Commun., 40, 80 (2014). crossref(new window)

A. Manthiram and J. Kim, 'Low temperature synthesis of insertion oxides for lithium batteries', Chem. Mater., 10, 2895 (1998). crossref(new window)

F. Amalraj, M. Talianker, B. Markovsky, D. Sharon, L. Burlaka, G. Shafir, E. Zinigrad, O. Haik, D. Aurbach, J. Lampert, M. Schulz-Dobrick and A. Garsuch, 'Study of the lithium-rich integrated compound $xLi_2MnO_3{\cdot}(1-x)LiMO_2$ (x around 0.5;M= Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells', J. Electrochem. Soc., 160, A324 (2012). crossref(new window)

R. Aroca, M. Nazri, G. A. Nazri, A. J. Camaro and M. Trsic, 'Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries', J. Solution Chem., 29, 1047 (2000). crossref(new window)

S.-W. Song, G. V. Zhuang and P. N. Ross, 'Surface film formation on $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes using attenuated total reflection IR spectroscopy', J. Electrochem. Soc., 151, A1162 (2004). crossref(new window)

G. V. Zhuang and P. N. Ross, 'Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy', Electrochem. Solid-State Lett., 6, A136 (2003). crossref(new window)

G. Socrates, "Infrared Characteristic Group Frequencies, Table and Charts, Second Edition", John Wiley & Sons, New York, (1994).

S.-W. Song and S.-W. Baek, 'Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries', Electrochem. Solid-State Lett., 12, A23 (2009). crossref(new window)

N. V. Kosova, E. T. Devyatkina and V. V. Kaichev, 'Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition', J. Power Sources, 174, 735 (2007). crossref(new window)

J. F. Moulder, J. Chastain, and R. C. King, "Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data", 82, Physical Electronics, Inc., Chanhassen, MN (1995).

E. Regan, T. Groutso, J. B. Metson, R. Steiner, B. Ammundsen, D. Hassell and P. Pickering, 'Surface and bulk composition of lithium manganese oxides', Surf. Interface Anal., 1068, 1064 (1999).

R. A. Quinlan, Y.-C. Lu, Y. Shao-Horn and A. N. Mansour, 'XPS studies of surface chemistry changes of $LiNi_{0.5}Mn_{0.5}O_2$ electrodes during high-voltage cycling', J. Electrochem. Soc., 160, A669 (2013). crossref(new window)