JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery
Cho, Kook-Jin; Park, Jin-Soo;
  PDF(new window)
 Abstract
Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.
 Keywords
Redox flow batteries;Ion exchange membranes;Life time prediction;
 Language
Korean
 Cited by
1.
Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells, Journal of the Korean Electrochemical Society, 2016, 19, 3, 107  crossref(new windwow)
 References
1.
W. Dai, L. Yu, Z. Li, J. Yan, L. Liu, J. Xi, and X. Qiu, 'Sulfonated Poly (Ether Ether Ketone)/Graphene composite membrane for vanadium redox flow battery', Electrochim. Acta, 132, 200 (2014). crossref(new window)

2.
X. Teng, J. Dai, F. Bi, and G. Yin, 'Ultra-thin polytetrafluoroethene/Nafion/silica composite membrane with high performance for vanadium redox flow battery', J. Power Sources, 272, 113 (2014). crossref(new window)

3.
B. Yin, Z. Li, W. Dai, L. Wang, L. Yu, and J. Xi, 'Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery', J. Power Sources, 285, 109 (2015). crossref(new window)

4.
B. Hwang, K. Kim, 'Redox pairs in redox flow batteries', J. Korean Electrochem. Soc., 16, 99 (2013) crossref(new window)

5.
S. Liu, L. Wang, Y. Ding, B. Liu, X. Han, and Y. Song, 'Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications', Electrochim. Acta, 130, 90 (2014). crossref(new window)

6.
Y. Li, H. Zhang, H. Zhang, J. Cao, W. Xu, and X. Li, 'Hydrophilic porous poly (sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application', J. Membrane Sci., 454, 478 (2014). crossref(new window)

7.
S. K. Park, J. Shim, J. H. Yang, C. S. Jin, B. S. Lee, and J. D. Jeon, 'The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery', Electrochim. Acta, 116, 447 (2014). crossref(new window)

8.
A. Chromik, A. R. dos Santos, T. Turek, U. Kunz, T. Haring, and J. Kerres, 'Stability of acid-excess acid-base blend membranes in all-vanadium redox-flow batteries', J. Membr. Sci., 476, 148 (2015). crossref(new window)

9.
X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, and Y. Dong, '$PbO_2$-modified graphite felt as the positive electrode for an all-vanadium redox flow battery', J. Power Sources, 250, 274 (2014). crossref(new window)

10.
Z. Li, W. Dai, L. Yu, J. Xi, X. Qiu, and L. Chen, 'Sulfonated poly (ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery', J. Power Sources, 257, 221 (2014). crossref(new window)

11.
J. Xi, Z. Wu, X. Qiu, and L. Chen, 'Nafion/$SiO_2$ hybrid membrane for vanadium redox flow battery', J. Power Sources, 166, 531 (2007). crossref(new window)

12.
J. Kim, J. D. Jeon, and S. Y. Kwak, 'Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery', Electrochem. Commun., 38, 68 (2014). crossref(new window)

13.
C. H. Lin, M. C. Yang, and H. J. Wei, 'Amino-silica modified Nafion membrane for vanadium redox flow battery' J. Power Sources, 282, 562 (2015). crossref(new window)

14.
S. Kim, T. B, Tighe, B. Schwenzer, J. Yan, J. Zhang, J. Liu, Z. Yang, and M. A. Hickner, "Chemical and mechanical degradation of sulfonated poly (sulfone) membranes in vanadium redox flow batteries', J. Appl. Electrochem., 41, 1201 (2011). crossref(new window)

15.
X. Teng, J. Dai, J. Su, and G. Yin, 'Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery', J. Membr. Sci., 476, 20 (2015). crossref(new window)