JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Interpretation of Deformation History and Paleostress Based on Fracture Analysis Exposed in a Trench
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Journal of Engineering Geology
  • Volume 26, Issue 1,  2016, pp.33-49
  • Publisher : The Korea Society of Engineering Gelolgy
  • DOI : 10.9720/kseg.2016.1.33
 Title & Authors
Interpretation of Deformation History and Paleostress Based on Fracture Analysis Exposed in a Trench
Gwon, Sehyeon; Kim, Young-Seog;
  PDF(new window)
 Abstract
The study area, located in Sinam-ri, Ulsan, in the southeastern part of the Korean Peninsula, is mainly composed of hornblende granite (ca. 65 Ma). Fracturing and reactivation of a fault striking ENE-WSW was strongly controlled by the intrusion of a mafic dyke (ca. 44 Ma), which behaves as a discontinuity in the mechanically homogeneous pluton, increasing the instability of the basement in this area. A geometric and kinematic study undertaken to interpret the faults and fractures was performed in a trench excavated almost perpendicular to the orientation of the dyke. The analysis of structural elements, such as dykes, veins, and faults, is used to infer the deformation history and to determine the paleostress orientations at the time of formation of the structures. The deformation history established based on this analysis is as follows: (1) NNE-SSW, E-W, ENE-WSW, and NE-SW trending fractures had already developed in the pluton before dyke intrusion; (2) felsic dykes intruded under conditions of σHmax oriented N-S and σHmin oriented E-W; (3) mafic dykes intruded under conditions of σHmax oriented E-W and σHmin oriented N-S; (4) dextral reactivation of the main fault associated with the development of hydrothermal quartz veins under conditions of σHmax oriented E-W and σHmin oriented N-S; (5) sinistral reactivation of the main fault and high-angle normal faults under conditions of σHmax oriented NE-SW and σHmin oriented NW-SE; and (6) dextral reactivation of the main fault and NE-SW low-angle reverse faults under conditions of σHmax oriented NW-SE and σHmin oriented NE-SW. These results are consistent with the tectonic history of the Pohang-Ulsan block in the southeastern part of the Korean Peninsula, and indicates the tectonic deformation of the southern area of the Ulsan fault bounded by Yangsan fault was analogous to that of the Pohang-Ulsan area from the Cenozoic. This work greatly aids the selection of sites for critical facilities to prevent potential earthquake hazards in this area.
 Keywords
fault;fracture;trench;fracture history;paleostress reconstruction;
 Language
Korean
 Cited by
1.
Paleostress reconstruction using fault-slip data from drill core: Application to the interpretation of the Quaternary faulting events in SE Korea, Journal of the Geological Society of Korea, 2017, 53, 1, 193  crossref(new windwow)
2.
Deformation history and characteristics of the Ilgwang Fault in Southeast Korea, Geosciences Journal, 2017  crossref(new windwow)
 References
1.
Allmendinger, R. W., Cardozo, N., and Fisher, D. M., 2011, Structural Geology Algorithms: Vectors and Tensors, Cambridge University Press.

2.
Anderson, E. M., 1951, The Dynamics of Faulting and Dyke Formation with Applications to Britain, Hafner Pub. Co.

3.
André, A., Sausse, J., and Lespinasse, M., 2001, New approach for the quantification of paleostress magnitudes: application to the Soultz vein system (Rhine graben, France), Tectonophysics, 336, 215-231. crossref(new window)

4.
Angelier, J., 1994, Fault slip analysis and paleostress reconstruction, Continental deformation, 4, 101-120.

5.
Angelier, J. and Mechler, P., 1977, Sur une methode graphique de recherche des contraintes principales egalement utilisables en tectonique et en seismologie: la methode des diedres droits, Bulletin de la Socitgologique de France, 1309-1318. crossref(new window)

6.
Angelier, J., 1984, Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89, 5835-5848. crossref(new window)

7.
Baer, G., Beyth, M., and Reches, Z., 1994, Dikes emplaced into fractured basement, Timna igneous complex, Israel, Journal of Geophysical Research: Solid Earth (1978-2012), 99, 24039-24050. crossref(new window)

8.
Bai, T., Maerten, L., Gross, M. R., and Aydin, A., 2002, Orthogonal cross joints: do they imply a regional stress rotation?, Journal of Structural Geology, 24, 77-88. crossref(new window)

9.
Beekman, F., Badsi, M., and van Wees, J., 2000, Faulting, fracturing and in situ stress prediction in the Ahnet Basin, Algeria-A finite element approach, Tectonophysics, 320(3), 311-329. crossref(new window)

10.
Bergbauer, S. and Martel, S. J., 1999, Formation of joints in cooling plutons, Journal of Structural Geology, 21, 821-835. crossref(new window)

11.
Billi, A., 2005, Grain size distribution and thickness of breccia and gouge zones from thin (< 1 m) strike-slip fault cores in limestone, Journal of Structural Geology, 27, 1823-1837. crossref(new window)

12.
Bott, M. H. P., 1959, The mechanics of oblique slip faulting, Geological Magazine, 96, 109-117. crossref(new window)

13.
Caine, J. S., Evans, J. P., and Forster, C. B., 1996, Fault zone architecture and permeability structure, Geology, 24, 1025-1028. crossref(new window)

14.
Caputo, R., 1995, Evolution of orthogonal sets of coeval extension joints, Terra Nova, 7, 479-490. crossref(new window)

15.
Chester, F. and Logan, J., 1987, Composite planar fabric of gouge from the Punchbowl fault, California, Journal of Structural Geology, 9, 621-634. crossref(new window)

16.
Choi, J. -H., Yang, S. -J., Han, S. -R., and Kim, Y. -S., 2015, Fault zone evolution during Cenozoic tectonic inversion in SE Korea, Journal of Asian Earth Sciences, 98, 167-177. crossref(new window)

17.
Choi, P. -Y., Hwang, J. -H., Park, K. -S., and Kwon, S. -K., 1999a, Deformation in and Around Southeast Korea in Relation to the Opening of the East Sea (Sea of Japan), Gondwana Research, 2, 537-540. crossref(new window)

18.
Choi, P. -Y., 1998, Tectonic Evolution of SE Korea since the Early Cretaceous, In: Anonymous Tectonic Evolution of East Asia, The First Joint Meeting of Japanese and Korean Structure and Tectonic Research Group, 113-121.

19.
Choi, P. -Y., Ryoo, C. -R., Kwon, S. -K., Chwae, U., Hwang, J. -H., Lee, S. R., and Lee, B. -J., 2002, Fault tectonic analysis of the Pohang-Ulsan area, SE Korea: Implications for active tectonics, The Journal of the Geological Society of Korea, 38, 33-50.

20.
Choi, P. -Y., Kwon, S. -K., Hwang, J. -H., and Lee, S. R., 1999b, Paleostress Analysis of Southeast Korea: Tectonic Sequence and Timing of Block Rotation of the Pohang - Ulshan Area,Gondwana Research, 2, 532-537. crossref(new window)

21.
Choi, P. -Y., Lee, H. -K., and Chwae, U., 2007, Tectonic 'aggression and retreat' in the Quaternary tectonics of southern Korea, Journal of the Geological Society of Korea, 43, 415-425.

22.
Cladouhos, T. T., 1999, Shape preferred orientations of survivor grains in fault gouge, Journal of Structural Geology, 21, 419-436. crossref(new window)

23.
Clemente, C. S., Amorós, E. B., and Crespo, M. G., 2007, Dike intrusion under shear stress: effects on magnetic and vesicle fabrics in dikes from rift zones of Tenerife (Canary Islands), Journal of Structural Geology, 29, 1931-1942. crossref(new window)

24.
d'Alessio, M. and Martel, S. J., 2005, Development of strikeslip faults from dikes, Sequoia National Park, California, Journal of Structural Geology, 27, 35-49. crossref(new window)

25.
Delaney, P. T., Pollard, D. D., and Ziony, J. I., McKee, E. H., 1986, Field relations between dikes and joints: Emplacement processes and paleostress analysis, Journal of Geophysical Research: Solid Earth, 91, 4920-4938. crossref(new window)

26.
Dewey, J. F., Holdsworth, R. E., and Strachan, R. A., 1998, Transpression and transtension zones, Geological Society, London, Special Publications, 135, 1-14. crossref(new window)

27.
Doblas, M., 1998, Slickenside kinematic indicators, Tectonophysics, 295, 187-197. crossref(new window)

28.
Dyer, R., 1988, Using joint interactions to estimate paleostress ratios, Journal of Structural Geology, 10, 685-699. crossref(new window)

29.
Engelder, T., 1999, Transitional-tensile fracture propagation: a status report, Journal of Structural Geology, 21, 1049-1055. crossref(new window)

30.
Ernst, R., Grosfils, E., and Mege, D., 2001, Giant dike swarms: Earth, venus, and mars, Annual Review of Earth and Planetary Sciences, 29, 489-534. crossref(new window)

31.
Evans, J. P., Forster, C. B., and Goddard, J. V., 1997, Permeability of fault-related rocks, and implications for hydraulic structure of fault zones, Journal of Structural Geology, 19, 1393-1404. crossref(new window)

32.
Eyal, Y., Gross, M. R., Engelder, T., and Becker A., 2001, Joint development during fluctuation of the regional stress field in southern Israel, Journal of Structural Geology, 23, 279-296. crossref(new window)

33.
Flodin, E. A. and Aydin, A., 2004, Evolution of a strike-slip fault network, Valley of Fire State Park, southern Nevada, Geological Society of America Bulletin, 116, 42-59. crossref(new window)

34.
Gross, M. R., 1993, The origin and spacing of cross joints: examples from the Monterey Formation, Santa Barbara Coastline, California, Journal of Structural Geology, 15, 737-751. crossref(new window)

35.
Hancock, P., 1985, Brittle microtectonics: principles and practice, Journal of Structural Geology, 7, 437-457. crossref(new window)

36.
Hubbert, M. K. and Willis, D. G., 1957, Mechanics of Hydraulic Fracturing, Journal of Petroleum Technology, 9, 153-168.

37.
Jeon, J. S. and Jun, M. -S., 2000, Study on the source mechanism and the characteristics of seismic wave propagation, Segye Press, Ministery of Science and Technology.

38.
Jin, K. and Kim, Y. -S., 2007, Fracture Developing History and Density Analysis based on Grid-mapping in Bonggil-ri, Gyeongju, SE Korea, The Journal of Engineering Geology, 17, 455-469.

39.
Jun, M. -S. and Jeon, J. S., 2010. Focal mechanism in and around the Korean Peninsula. Jigu-Mulli-wa-Mulli-Tamsa, 13, 198-202, (in Korean with English abstract).

40.
Jolly, R. and Sanderson, D. J., 1995, Variation in the form and distribution of dykes in the Mull swarm, Scotland, Journal of Structural Geology, 17, 1543-1557. crossref(new window)

41.
Jolly, R. and Sanderson, D. J., 1997, A Mohr circle construction for the opening of a pre-existing fracture, Journal of Structural Geology, 19, 887-892. crossref(new window)

42.
Kee, W. -S., Koh, H. J., Cho, D. -L., Kihm, Y. H., Lee, B. -J., Kim, B. -C., Song, K., and Kim, I. J., 2003, Study on expansion of earthquake observation network and geological survey around Nuclear Power Plant (Geology), Korea Institute of Geosciences and Mineral Resources, p. 50.

43.
Kent, J. T., 1982, The Fisher-Bingham distribution on the sphere, Journal of the Royal Statistical Society, Series B (Methodological), 71-80.

44.
KIGAM, 2014, Report on focal mechanism in 23rd-25th, September, 2014, Earthquake research centre, Korea institute of geoscience and mineral resources, unpublished.

45.
Kim, D., Hwang, J., Park, K., and Song, K., 1998, Explanatory note of the Pusan sheet, 1:250,000, Korea institute of geology, mining & materials, 62pp.

46.
Kim, J. -S., Ree, J. -H., Han, S. -H., Kim, H. -S., Lee, Y. -J., Lee, K. -J., and Joo, B. -C., 2003, The Ilkwang Fault in southeastern Korea revealed by geophysical and trench surveys, Journal of the Geological Society of Korea, 39(2), 211-223.

47.
Kim, Y. -S., Andrews J. R., and Sanderson, D. J., 2001,Reactivated strike-slip faults: examples from north Cornwall, UK, Tectonophysics, 340, 173-194. crossref(new window)

48.
Kim, Y. -S. and Park J. -Y., 2006, Cenozoic deformation history of the area around Yangnam-Yangbuk, SE Korea and its tectonic significance, Journal of Asian Earth Sciences, 26, 1-20. crossref(new window)

49.
Kim, Y. -S., Peacock, D. C., and Sanderson, D. J., 2004, Fault damage zones, Journal of Structural Geology, 26, 503-517. crossref(new window)

50.
Kim, Y. -S., Jin, K., Choi, W. -H., and Kee, W. -S., 2011a, Understanding of active faults: A review for recent researches, Journal of the Geological Society of Korea, 47, 723-752.

51.
Kim, Y. -S., Kihm, J. -H., and Jin, K., 2011b, Interpretation of the rupture history of a low slip-rate active fault by analysis of progressive displacement accumulation: an example from the Quaternary Eupcheon Fault, SE Korea, Journal of the Geological Society, 168, 273-288. crossref(new window)

52.
KOPEC, 2007, Report on the fault analysis in SHINKORI NUCLEAR POWER PLANT UNITS 1 and 2.

53.
KOPEC, 2009, Comprehensive report on a foundation of the ground in SHINKORI NUCLEAR POWER PLANT UNITS 3 and 4.

54.
Lee, H. -K. and Kim, H. S., 2005, Comparison of structural features of the fault zone developed at different protoliths: crystalline rocks and mudrocks, Journal of Structural Geology, 27, 2099-2112. crossref(new window)

55.
Lister, G. and Snoke, A., 1984, SC mylonites, Journal of Structural Geology, 6, 617-638. crossref(new window)

56.
Mark, D. M., 1973, Analysis of axial orientation data, including till fabrics, Geological Society of America Bulletin, 84, 1369-1374. crossref(new window)

57.
Marrett, R. and Allmendinger, R. W., 1990, Kinematic analysis of fault-slip data, Journal of Structural Geology, 12, 973-986. crossref(new window)

58.
Marshak, S. and Mitra, G., 1988, Basic Methods of Structural Geology, Prentice Hall.

59.
Martel, S. J. and Boger, W. A., 1998, Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock, Journal of Geophysical Research: Solid Earth (1978-2012), 103, 21299-21314. crossref(new window)

60.
Martel, S. J., Pollard, D. D., and Segall, P., 1988, Development of simple strike-slip fault zones, Mount Abbot quadrangle, Sierra Nevada, California, Geological Society of America Bulletin, 100, 1451-1465. crossref(new window)

61.
Martínez-Poza, A. I., Druguet, E., Castaño, L. M., and Carreras, J., 2014, Dyke intrusion into a pre-existing joint network: The Aiguablava lamprophyre dyke swarm (Catalan Coastal Ranges),Tectonophysics, 630, 75-90. crossref(new window)

62.
McCalpin, J. P., 2009, Paleoseismology, Academic press.

63.
McGill, S., and Rockwell, T., 1998, Ages of late Holocene earthquakes on the central Garlock fault near El Paso Peaks, California, Journal of Geophysical Research: Solid Earth (1978-2012),103, 7265-7279. crossref(new window)

64.
Meghraoui, M., Gomez, F., Sbeinati, R., Van der Woerd, J., Mouty, M., Darkal, A. N., Radwan, Y., Layyous, I., Al Najjar, H., Darawcheh, R., Hijazi, F., Al-Ghazzi, R., and Barazangi, M., 2003, Evidence for 830 years of seismic quiescence from palaeoseismology, archaeoseismology and historical seismicity along the Dead Sea faultin Syria, Earth and Planetary Science Letters, 210, 35-52. crossref(new window)

65.
Nakamura, K. and Uyeda, S., 1980, Stress gradient in arc-back arc regions and plate subduction, Journal of Geophysical Research: Solid Earth (1978-2012), 85, 6419-6428. crossref(new window)

66.
Olson, J. and Pollard, D. D., 1989, Inferring paleostresses from natural fracture patterns: A new method, Geology, 17, 345-348. crossref(new window)

67.
Onstott, T. C., 1980, Application of the Bingham distribution function in paleomagnetic studies, Journal of Geophysical Research: Solid Earth (1978-2012), 85, 1500-1510. crossref(new window)

68.
Pachell, M. A. and Evans, J. P., 2002, Growth, linkage, and termination processes of a 10-km-long strike-slip fault in jointed granite: the Gemini fault zone, Sierra Nevada, California, Journal of Structural Geology, 24, 1903-1924. crossref(new window)

69.
Peacock, D. C. P., 2001, The temporal relationship between joints and faults, Journal of Structural Geology, 23, 329-341. crossref(new window)

70.
Petit, J. P., 1987, Criteria for the sense of movement on fault surfaces in brittle rocks, Journal of Structural Geology, 9, 597-608. crossref(new window)

71.
Pollard, D. D. and Aydin, A., 1988, Progress in understanding jointing over the past century, Geological Society of America Bulletin, 100, 1181-1204. crossref(new window)

72.
Price, N. J., 1966, Fault and Joint Development in Brittle and Semi-Brittle Rock, Pergamon Press Oxford.

73.
Ramsay, J., 1980, Shear zone geometry: a review, Journal of Structural Geology, 2, 83-99. crossref(new window)

74.
Rockwell, T. K., Lindvall, S., Herzberg, M., Murbach, D., Dawson, T., and Berger, G., 2000, Paleoseismology of the Johnson Valley, Kickapoo, and Homestead Valley Faults: Clustering of Earthquakes in the Eastern California Shear Zone, Bulletin of the Seismological Society of America, 90, 1200-1236. crossref(new window)

75.
Segall, P. and Pollard, D. D., 1983, Nucleation and growth of strike slip faults in granite, Journal of Geophysical Research: Solid Earth (1978-2012), 88, 555-568. crossref(new window)

76.
Segall, P. and Simpson, C., 1986, Nucleation of ductile shear zones on dilatant fractures, Geology, 14, 56-59. crossref(new window)

77.
Seno, T., Stein, S., and Gripp, A. E., 1993, A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data, Journal of Geophysical Research: Solid Earth (1978-2012), 98, 17941-17948. crossref(new window)

78.
Shipton, Z. and Cowie, P., 2001, Damage zone and slip-surface evolution over m to km scales in high-porosity Navajo sandstone, Utah, Journal of Structural Geology, 23, 1825-1844. crossref(new window)

79.
Sibson, R. H., 1977, Fault rocks and fault mechanisms, Journal of the Geological Society, 133, 191-213. crossref(new window)

80.
Sibson, R. H., 1992, Implications of fault-valve behaviour for rupture nucleation and recurrence, Tectonophysics, 211(1), 283-293. crossref(new window)

81.
Sibson, R. H., 2003, Brittle-failure controls on maximum sustainable overpressure in different tectonic regimes, AAPG Bulletin, 87, 901-908. crossref(new window)

82.
Speight, J., Skelhorn, R., Sloan, T., and Knaap, R., 1982, The dyke swarms of Scotland, Igneous rocks of the British Isles, 449-459.

83.
Sylvester, A. G., 1988, Strike-slip faults, Geological Society of America Bulletin, 100, 1666-1703. crossref(new window)

84.
Toy, V. G., Prior, D. J., Norris, R. J., Cooper, A. F., and Walrond, M., 2012, Relationships between kinematic indicators and strain during syn-deformational exhumation of an oblique slip, transpressive, plate boundary shear zone: the Alpine Fault, New Zealand, Earth and Planetary Science Letters, 333, 282-292. crossref(new window)

85.
Wallace, R. E., 1951, Geometry of shearing stress and relation to faulting, The Journal of geology, 118-130. crossref(new window)

86.
Wilkins, S. J., Gross, M. R., Wacker, M., Eyal, Y., and Engelder, T., 2001, Faulted joints: kinematics, displacement-length scaling relations and criteria for their identification, Journal of Structural Geology, 23, 315-327. crossref(new window)

87.
Woodcock, N. H. and Fischer, M., 1986, Strike-slip duplexes, Journal of Structural Geology, 8, 725-735. crossref(new window)

88.
Yamaji, A., 2000, The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data, Journal of Structural Geology, 22, 441-452. crossref(new window)

89.
Yang, S. -J., Jin, K., and Kim, Y. -S., 2008, Paleostress conditions based on dyke intrusion patterns and deformation histories in Geo-je island, SE Korea, Journal of the Geological Society of Korea, 44, 747-764.

90.
Yen, I., Chen, W., Yang, C. B., and Huang, N., Lin, C., 2008, Paleoseismology of the Rueisuei Segment of the Longitudinal Valley Fault, Eastern Taiwan, Bulletin of the Seismological Society of America, 98, 1737-1749. crossref(new window)

91.
Zoback, M. and Healy, J., 1984, Friction, faulting and "in situ" stress, in Annales Geophysicae, Gauthier-Villars, 689-698.

92.
Zoback, M. L., 1992, First-and second-order patterns of stress in the lithosphere: the world stress map project.