JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Direct Determination of Cationic Disordering in Sodium Bismuth Titanate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 42, Issue 3,  2012, pp.164-173
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2012.42.3.164
 Title & Authors
Direct Determination of Cationic Disordering in Sodium Bismuth Titanate
Choi, Si-Young; Ikuhara, Yuichi;
  PDF(new window)
 Abstract
The relaxor ferroelectric feature in lead-free perovskite oxides, where the dipoles are randomly oriented and they can be feasibly aligned parallel to the external bias, is attracting lots of attention in the field of piezoelectric materials science, since it is one of candidates to replace the toxic lead-based materials that are still being commercially used. However, the origin of relaxor characteristic and its related atomic structure are still ambiguous. In this study, , chosen as a model relaxor system, was found to exhibit a cationic-disordered atomic structure; and furthermore the nonpolar atomic structure and its related oxygen tilting were ascertained via annular bright field imaging skill. We also found that this cationic disordering gives rise to the local formation of atomic vacancies.
 Keywords
Sodium bismuth titanate;Point defect;Relaxor;Ferroelectric;Aberration-corrected STEM;
 Language
English
 Cited by
 References
1.
Bao P, Yan F, Li W, Dai Y R, Shen H M, Zhu J S, Wang Y N, Chan H L W, and Choy C-L (2002) Mechanical properties related to the relaxorferroelectric phase transition of titanium-doped lead magnesium niobate. Appl. Phys. Lett. 81, 2059-2061. crossref(new window)

2.
Batson P E, Dellby N and Krivanek O L (2002) Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617-620. crossref(new window)

3.
Bokov A A, Leshchenko M A, Malitskaya M A and Raevski I P (1999) Dielectric spectra and Vogel-Fulcher scaling in Pb(In0.5Nb0.5)O3 relaxor ferroelectric. J. Phys.: Condensed Matter 11, 4899-4911. crossref(new window)

4.
Burton B P and Cockayne E (2001) Prediction of the Na1/2Bi1/2TiO3 ground state. AIP Conference Proceedings in Fundamental Physics of Ferroelectrics 582, 82-90.

5.
Chiang Y-M, Farrey G W and Soukhojak A N (1998) Lead-free highstrain single-crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family. Appl. Phys. Lett. 73, 3683-3685. crossref(new window)

6.
Choi S-Y, Chung S-Y, Yamamoto T, and Ikuhara Y (2009) Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM. Adv. Mater. 21, 885-889. crossref(new window)

7.
Choi S-Y, Jeong S-J, Lee D-S, Kim M-S, Lee J-S, Cho J H, Kim B I, and Ikuhara Y (2012) Gigantic electrostrain in duplex structured alkaline niobates. Chem. Mater. 24, 3363-3369. crossref(new window)

8.
Chu F, Setter N and Tagantsev A K (1993) The spontaneous relaxorferroelectric transition of Pb(Sc0.5Ta0.5)O3. J. Appl. Phys. 74, 5219- 5134.

9.
Chung S-Y, Choi S-Y, Yamamoto T and Ikuhara Y (2008) Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502-1-125502-4. crossref(new window)

10.
Chung S-Y, Choi S-Y, Yamamoto T and Ikuhara Y (2009) Orientation- Dependent Arrangement of Antisite Defects in Lithium Iron(II) Phosphate Crystals. Angew. Chem. Int. Ed. 48, 543-546. crossref(new window)

11.
Dai X, Xu Z and Viehland D (1994) The spontaneous relaxor to normal ferroelectric transformation in La-modified lead zirconate titanate. Phil. Mag. B 71, 33-38.

12.
Dorcet V, Trolliard G and Boullay P (2008a) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part I: First order rhomboheral to orthorhombic phase transition. Chem. Mater. 20, 5061-5073. crossref(new window)

13.
Dorcet V, Trolliard G and Boullay P (2008b) Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: Second order orhorhombic to tetragonal phase transition. Chem. Mater. 20, 5074- 5082. crossref(new window)

14.
Dorcet V and Troillard G (2008) A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta. Mater. 56, 1753-1761. crossref(new window)

15.
Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, and Ikuhara Y (2010) Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903-923. crossref(new window)

16.
Haider M, Uhlemann S, Schwan E, Kabius B, Rose H, and Urban K (1998) Electron microscopy image enhanced. Nature 392, 768-769. crossref(new window)

17.
Hovden R, Xin H L, and Muller D A (2010) Extended depth of field for high-resolution scanning transmission electron microscopy. Microsc. Microanal. 17, 75-80.

18.
Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, and Abe E (2010) Direct imaging of hydrogen-atom columns in a crystal by annular bright-fi eld electron microscopy. Nature Mater. 10, 278-281.

19.
Jia C L, Mi S-B, Urban K, Vrejoiu I, Alexe M, and Hesse D (2008) Atomicscale study of electric dipoles near charged an uncharged domain walls in ferroelectric films. Nature Mater. 7, 57-61. crossref(new window)

20.
Jones G O and Thomas P A (2000) The tetragonal phase of Na0.5Bi0.5TiO3 - a new variant of the perovskite structure. Acta. Cryst. B 56, 426- 430. crossref(new window)

21.
Jones G O and Thomas P A (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta. Cryst. B 58, 168-178. crossref(new window)

22.
Klie R F and Browning N D (2000) Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. Appl. Phys. Lett. 87, 3737-3739.

23.
Kreisel J, Glazer A M, Bouvier P, and Lucazeau G (2001) High-pressure Raman study of a relaxor ferroelectric: the Na1/2Bi1/2TiO3 perovskite. Phys. Rev. B 63, 174106-1-174106-10. crossref(new window)

24.
Kreisel J, Glazer A M, Jones G, Thomas P A, Abello L, and Lucazeau G (2000) An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0 < x < 1) solid solution. J. Phys.: Condensed Matter 12, 3627- 3280.

25.
Krunmins A, Shiosaki T, and Koizumi S (1994) Spontaneous trasition between relaxor and ferroelectric states in lanthanum-modifi ed lead zirconate titanate (6-7)/65/35. Jpn. J. Appl. Phys. 33, 4940-4945. crossref(new window)

26.
Levin I and Reaney I M (2012) Nano-and mesoscale structure of Na1/2Bi1/2TiO3: a TEM perspective. Adv. Func. Mater. 22, 3445- 3452. crossref(new window)

27.
Lupini A R and Pennycook S J (2007) Aberration corrected imaging in the STEM. Microsc. Microanal. 13, 1146-1147.

28.
Mizoguchi T, Olovsson W, Ikeno H and Tanaka I (2010) Theoretical ELNES using one-particle and multi-particle calculations. Micron 41, 695- 709. crossref(new window)

29.
Muller D A, Nakagawa N, Ohtomo A, Grazul J L, and Hwang H Y (2004) Atomic-scale imaging of nanoengineered oxygen vacancy profi les in SrTiO3. Nature 430, 657-661. crossref(new window)

30.
Nellist P D, Chisholm M F, Dellby N, Krivanek O L, Murfi tt M F, Szilagy Z S, Lupini A R, Borisevich A, Sides Jr. W H, and Pennycook S J (2004) Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741. crossref(new window)

31.
Okunishi E, Ishikawa I, Sawada H, Hosokawa F, Hori M, and Kondo Y (2009) Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15, 164-165. crossref(new window)

32.
Park S-E, Chung S-J, Kim I-T, and Hong K S (1994) Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2) TiO3. J. Am. Ceram. Soc. 77, 2641-2647. crossref(new window)

33.
Petzelt J, Kamba S, Fabry J, Noujni D, Porokhonskyy V, Pashkin A, Franke I, Roleder K, Suchanicz J, Klein R, and Kugel G E (2004) Infrared, Raman and high-frequency dielectric sspectroscopy and the phase transition in Na1/2Bi1/2TiO3. J. Phys.: Condensed Matter 16, 2719- 2731. crossref(new window)

34.
Sciau P, Calvarin G, and Ravez J (2000) X-ray diffraction study of BaTi0.65Zr0.35O3 and Ba0.92Ca0.08Ti0.75Zr0.25O3 compositions: influence of electric field. Sol. Stat. Commun. 113, 77- 82.

35.
Simon A, Ravez J J, and Maglione M (2004) The crossover from a ferroelectric to a relaxor state in lead-free solid solutions. J. Phys.: Condensed Matter 16, 963. crossref(new window)

36.
Siny G, Smirnova T A, and Krunzina T V (1991) The phase transition dynamics in Na1/2Bi1/2TiO3. Ferroelectrics 124, 207-212. crossref(new window)

37.
Smolenskii G A, Isupov V A, Agranovskaya A I, and Krainik N N (1961a) New ferroelectrics of complex composition. Sov. Phys. Solid State 2, 2651-2654.

38.
Smolenskii G A, Isupov V A, Agranovskaya A I, and Popov S N (1961b) Ferroelectrics with diffuse phase transitions. Sov. Phys. Solid State 2, 2584-2594.

39.
Tagantsev A K and Galzounov A E (1998) Mechanism of polarization response in the ergodic phase of a relaxor ferroelectric. Phys. Rev. B 57, 18-21. crossref(new window)

40.
Tai C W and Lereah Y (2009) Nanoscale oxygen octahedral tilting in 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2K1/2)TiO3-0.05BaTiO3 leadfree perovskite piezoelectric ceramics. Appl. Phys. Lett. 95, 062901-1-062901-3. crossref(new window)

41.
Tu C S, Siny I G, and Schmidt V H (1994) Brillouin scattering in Na1/2Bi1/2TiO3. Ferroelectrics 152, 403-408. crossref(new window)

42.
Vakhrushev S B, Isupov V A, Kvyatkovsky B E, Okuneva N M, Pronin I P, Smolensky G A, and Syrnikov P P. Phase transition and soft modes in sodium bismuth titanate. Ferroelectrics 63, 153-160.

43.
Xu Y-N and Ching W Y (2000) Electronic structure of Na1/2Bi1/2TiO3 and its solid solution with BaTiO3. Phy. Mag. B 80, 1141-1151. crossref(new window)

44.
Yao J, Ge W, Yan Li, Reynolds W T, Li J, Viehland D, Keselev D A, Kholkin A L, Zhang Q, and Luo H (2012) The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: increased ferroelectric ordering and coexisting octahedral tilts. J. Appl. Phys. 111, 064109-1-064109-6. crossref(new window)

45.
Yasuda N, Ohwa H, and Asano S (1996) Dielectric properties and phase transitions of Ba(Ti1-xSnx)O3 solid solution. Jpn. J. Appl. Phys. 35, 5099. crossref(new window)