Advanced SearchSearch Tips
Synthesis and Characterization of a Pt/NiO/Pt Heterostructure for Resistance Random Access Memory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 42, Issue 4,  2012, pp.207-211
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2012.42.4.207
 Title & Authors
Synthesis and Characterization of a Pt/NiO/Pt Heterostructure for Resistance Random Access Memory
Kim, Hyung-Kyu; Bae, Jee-Hwan; Kim, Tae-Hoon; Song, Kwan-Woo; Yang, Cheol-Woong;
  PDF(new window)
We examined the electrical properties and microstructure of NiO produced using a sol-gel method and Ni nitrate hexahydrate () to investigate if this NiO thin film can be used as an insulator layer for resistance random access memory (ReRAM) devices. It was found that as-prepared NiO film was polycrystalline and presented as the nonstoichiometric compound with Ni interstitials (oxygen vacancies). Resistances-witching behavior was observed in the range of 0~2 V, and the low-resistance state and high-resistance state were clearly distinguishable ( orders). It was also demonstrated that NiO could be patterned directly by KrF eximer laser irradiation using a shadow mask. NiO thin film fabricated by the sol-gel method does not require any photoresist or vacuum processes, and therefore has potential for application as an insulating layer in low-cost ReRAM devices.
Resistance-switching;Resistance random access memory;NiO;Laser decomposition;Sol-gel method;
 Cited by
Bahari Molla Mahaleh Y, Sadrnezhaad S K, and Hosseini D (2008) NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. J. Nanomater. 2008, 470595.

Beck A, Bednorz J G, Gerber C, Rossel C, and Widmer D (2000) Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139-141. crossref(new window)

Brockner W, Ehrhardt C, and Gjikaj M (2007) Thermal decomposition of nickel nitrate hexahydrate, $Ni(NO_{3})_{2}{\cdot}6H_{2}O$, in comparison to $Co(NO_{3})_{2}{\cdot}6H_{2}O $ and $Ca(NO_{3})_{2}{\cdot}4H_{2}O$. Thermochim. Acta. 456, 64-68. crossref(new window)

Chang S H, Lee J S, Chae S C, Lee S B, Liu C, Kahng B, Kim D W, and Noh T W (2009) Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801. crossref(new window)

Gibbons J F and Beadle W E (1964) Switching properties of thin NiO films. Solid-State Electron. 7, 785-797. crossref(new window)

Guan W, Long S, Hu Y, Liu Q, Wang Q, and Liu M (2009) Resistance switching characteristics of zirconium oxide containing gold nanocrystals for nonvolatile memory applications. J. Nanosci. Nanotechnol. 9, 723-726. crossref(new window)

Inoue I H, Yasuda S, Akinaga H, and Takagi H (2008) Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution. Phys. Rev. B 77, 035105. crossref(new window)

Ishihara T, Ohkubo I, Tsubouchi K, Kumigashira H, Joshi U S, Matsumoto Y, Koinuma H, and Oshima M (2008) Electrode dependence and fi lm resistivity effect in the electric-fi eld-induced resistance-switching phenomena in epitaxial NiO films. Mater. Sci. Eng. B 148, 40-42. crossref(new window)

Kim C H, Moon H B, Min S S, Jang Y H, and Cho J H (2009) Nanoscale formation mechanism of conducting filaments in NiO thin films. Solid State Commun. 149, 1611-1615. crossref(new window)

Kim D C, Seo S, Ahn S E, Suh D S, Lee M J, Park B H, Yoo I K, Baek I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U, Moon J T, and Ryu B I (2006) Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102. crossref(new window)

Liu C, Chae S C, Lee J S, Chang S H, Lee S B, Kim D W, Jung C U, Seo S, Ahn S E, Kahng B, and Noh T W (2009) Abnormal resistance switching behaviours of NiO thin fi lms: possible occurrence of both formation and rupturing of conducting channels. J. Phys. D: Appl. Phys. 42, 015506 crossref(new window)

Park I S, Lee J H, Lee S W, and Ahn J H (2007) Resistance switching characteristics of $HfO_{2}$ film with electrode for resistance change random access memory. J. Nanosci. Nanotechnol. 7, 4139-4142. crossref(new window)

Park M H, Lee J W, Lee Y I, Lee J H, Hwang J H, Kim H K, and Yang C W (2011) Patterning of catalysts for the selective growth of carbon nanotubes using laser irradiation of nickel nitrate. J. Nanosci. Nanotechnol. 11, 602-605. crossref(new window)

Sawa A, Fujii T, Kawasaki M, and Tokura Y (2005) Interface transport properties and resistance switching in perovskite-oxide heterojunctions. Proc. SPIE 5932, 59322C.

Seo S, Lee M J, Kim D C, Ahn S E, Park B H, Kim Y S, Yoo I K, Byun I S, Hwang I R, Kim S H, Kim J S, Choi J S, Lee J H, Jeon S H, Hong S H, and Park B H (2005) Electrode dependence of resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 87, 263507. crossref(new window)

Seo S, Lee M J, Seo D H, Jeoung E J, Suh D S, Joung Y S, Yoo I K, Hwang I R, Kim S H, Byun I S, Kim J S, Choi J S, and Park B H (2004) Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655. crossref(new window)

Waser R, Dittmann R, Staikov G, and Szot K (2009) Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663. crossref(new window)

Zhuang W W, Pan W, Ulrich B D, Lee J J, Stecker L, Burmaster A, Evans D R, Hsu S T, Tajiri M, Shimaoka A, Inoue K, Naka T, Awaya N, Sakiyama A, Wang Y, Liu S Q, Wu N J, and Ignatiev A (2002) Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). In: Electron Devices Meeting, 2002. IEDM '02. International, pp. 193-196, (IEEE Conference Publications, Piscataway).