Advanced SearchSearch Tips
Atomic Resolution Imaging of Rotated Bilayer Graphene Sheets Using a Low kV Aberration-corrected Transmission Electron Microscope
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 42, Issue 4,  2012, pp.218-222
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2012.42.4.218
 Title & Authors
Atomic Resolution Imaging of Rotated Bilayer Graphene Sheets Using a Low kV Aberration-corrected Transmission Electron Microscope
Ryu, Gyeong Hee; Park, Hyo Ju; Kim, Na Yeon; Lee, Zonghoon;
  PDF(new window)
Modern aberration-corrected transmission electron microscope (TEM) with appropriate electron beam energy is able to achieve atomic resolution imaging of single and bilayer graphene sheets. Especially, atomic configuration of bilayer graphene with a rotation angle can be identified from the direct imaging and phase reconstructed imaging since atomic resolution Moir pattern can be obtained successfully at atomic scale using an aberration-corrected TEM. This study boosts a reliable stacking order analysis, which is required for synthesized or artificially prepared multilayer graphene, and lets graphene researchers utilize the information of atomic configuration of stacked graphene layers readily.
Bilayer graphene;Aberration-corrected TEM imaging;Atomic resolution;Low kV imaging;Simulation;
 Cited by
Mechanism of Graphene Oxide Formation, ACS Nano, 2014, 8, 3, 3060  crossref(new windwow)
Abergel D S L and Fal'ko V I (2007) Optical and magneto-optical far-infrared properties of bilayer graphene. Physical Review B 75, 155430-155434. crossref(new window)

Banhart F, Kotakoski J, and Krasheninnikov A V (2011) Structural defects in graphene. ACS Nano 5, 26-41. crossref(new window)

Bao W, Jing L, Velasco Jr J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Dronin S B, Smirnov D, Koshino M, McCann E, Bockrath M, and Lau C N (2011) Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Physics 7, 948-952. crossref(new window)

Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K (2009) The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162. crossref(new window)

Dato A, Radmilovic V, Lee Z, Phillips J, and Frenklach M (2008) Substratefree gas-phase synthesis of graphene sheets. Nano Letters 8, 2012- 2016. crossref(new window)

6. (2009) $Titan3^{TM}$ G2 60-300 [Internet]. Available from:

Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, and Zettl A (2011a) Multiply folded graphene. Physical Review B 83, 245433-245440. crossref(new window)

Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, and Zettl A (2011b) Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142-2146. crossref(new window)

Lee Z, Jeon K J, Dato A, Erni R, Richardson T J, Frenklach M, and Radmilovic V (2009a) Direct imaging of soft-hard interfaces enabled by graphene. Nano Letters 9, 3365-3369. crossref(new window)

Lee Z, Dato A, Jeon K J, Erni R, Richardson T J, Frenklach M, and Radmilovic V (2009b) Atomic resolution imaging and spectroscopy of graphene using the TEAM 0.5. Microscopy & Microanalysis 15, 124- 125. crossref(new window)

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314. crossref(new window)

Novoselov K S, Geim A K, Morzov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306, 666-669. crossref(new window)

Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, and Geim A K (2005) Two-dimensional atomic crystals. PNAS 102, 10451-1045. crossref(new window)

Ohta T, Bostwick A, Seyller T, Horn K, and Rotenberg E (2006) Controlling the electronic structure of bilayer grapheme. Science 313, 951-954. crossref(new window)

Park S and Ruoff R S (2009) Chemical methods for the production of graphenes. Nature Nanotechnology 4, 217-224. crossref(new window)

Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823. crossref(new window)

Zobelli A, Gloter A, Ewels C, Seifert G, and Colliex C (2007) Electron knockon cross section of carbon and boron nitride nanotubes. Physical Review B 75, 245402. crossref(new window)