JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Morphological Diversity of Mitochondria in Cultured Astrocyte, HeLa, COS7 Cells under High Voltage Electron Microscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 43, Issue 3,  2013, pp.117-121
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2013.43.3.117
 Title & Authors
Morphological Diversity of Mitochondria in Cultured Astrocyte, HeLa, COS7 Cells under High Voltage Electron Microscopy
Kim, Hyun-Wook; Park, Seung Nam; Moon, Younghye; Oh, Seung Hak; Rhyu, Im Joo;
  PDF(new window)
 Abstract
Mitochondrion is an important intracellular organelle controlling energy production essential for cell survival. In addition, it is closely related to cellular apoptosis and necrosis. Linear, branched, circular, and ball-shaped mitochondria have been reported. Recent research suggests that mitochondrial morphology may reflect functional status of the cell. In this study, we investigated the density and ratio of the each morphological categories of mitochondria in a few normal cultured cells; astrocyte, HeLa and COS7 cells, of which metabolic activities are different, with high voltage electron microscopy. The absolute number and relative number per unit area of mitochondria was largest in astrocyte. But, the proportion of different mitochondrial shape was similar among cells. These results shows the numerical profiles but not morphological profiles of mitochondria are related to the metabolic activity of each cell line.
 Keywords
Mitochondria;Astrocyte;HeLa cell;COS7 cell;High voltage electron microscopy;
 Language
English
 Cited by
1.
Multi-walled Carbon Nanotubes Affect the Morphology and Membrane Potential of Mitochondria in HeLa Cell,;;;;;

Applied Microscopy, 2014. vol.44. 2, pp.68-73 crossref(new window)
 References
1.
Belanger M and Magistretti P J (2009) The role of astroglia in neuroprotection. Dialogues Clin. Neurosci. 11, 281-295.

2.
Cerveny K L, Tamura Y, Zhang Z, Jensen R E, and Sesaki H (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol. 17, 563-569. crossref(new window)

3.
Chen Y and Swanson R A (2003) Astrocytes and brain injury. J. Cereb. Blood Flow Metab. 23, 137-149. crossref(new window)

4.
de Vellis J and Cole R (2012) Preparation of mixed glial cultures from postnatal rat brain. Methods Mol. Biol. 814, 49-59. crossref(new window)

5.
Detmer S A and Chan D C (2007) Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-879. crossref(new window)

6.
Eroglu C and Barres B A (2010) Regulation of synaptic connectivity by glia. Nature 468, 223-231. crossref(new window)

7.
Friederich M, Hansell P, and Palm F (2009) Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr. Diabetes Rev. 5, 120-144. crossref(new window)

8.
Goldstein S, Moerman E J, and Porter K (1984) High-voltage electron microscopy of human diploid fibroblasts during ageing in vitro. Morphometric analysis of mitochondria. Exp. Cell Res. 154, 101-111. crossref(new window)

9.
Juurlink B H, Hertz L, and Yager J Y (1992) Astrocyte maturation and susceptibility to ischaemia or substrate deprivation. Neuroreport 3, 1135-1137. crossref(new window)

10.
Kahraman S, Bambrick L L, and Fiskum G (2011) Effects of FK506 and cyclosporin a on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. J. Neurosci. Res. 89, 1973-1978. crossref(new window)

11.
Kim H W, Oh S H, Kim J W, Cho B, Park I S, Sun W, and Rhyu I J (2012) Efficient and accurate analysis of mitochondrial morphology in a whole cell with a high-voltage electron microscopy. J. Electron. Microsc. (Tokyo) 61, 127-131. crossref(new window)

12.
Noske A B, Costin A J, Morgan G P, and Marsh B J (2008) Expedited approaches to whole cell electron tomography and organelle markup in situ in high-pressure frozen pancreatic islets. J. Struct. Biol. 161, 298-313. crossref(new window)

13.
Palade G E (1953) An electron microscope study of the mitochondrial structure. J. Histochem. Cytochem. 1, 188-211. crossref(new window)

14.
Robin E D and Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell Physiol. 136, 507-513. crossref(new window)

15.
Scheffler I E (1999) Mitochondria (Wiley-Liss, New York).

16.
Soubannier V and McBride H M (2009) Positioning mitochondrial plasticity within cellular signaling cascades. Biochim. Biophys. Acta 1793, 154-170. crossref(new window)

17.
Takaoka A, Hasegawa T, Yoshida K, and Mori H (2008) Microscopic tomography with ultra-HVEM and applications. Ultramicroscopy 108, 230-238. crossref(new window)

18.
Tsai H H, Li H, Fuentealba L C, Molofsky A V, Taveira-Marques R, Zhuang H, Tenney A, Murnen A T, Fancy S P, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson W D, and Rowitch D H (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358-362. crossref(new window)

19.
Twig G, Elorza A, Molina A J, Mohamed H, Wikstrom J D, Walzer G, Stiles L, Haigh S E, Katz S, Las G, Alroy J, Wu M, Py B F, Yuan J, Deeney J T, Corkey B E, and Shirihai O S (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446. crossref(new window)