JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Probing of Surface Potential Using Atomic Force Microscopy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 44, Issue 3,  2014, pp.100-104
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2014.44.3.100
 Title & Authors
Probing of Surface Potential Using Atomic Force Microscopy
Kwon, Owoong; Kim, Yunseok;
  PDF(new window)
 Abstract
As decreasing device size, probing of nanoscale surface properties becomes more significant. In particular, nanoscale probing of surface potential has paid much attention for understanding various surface phenomena. In this article, we review different atomic force microscopy techniques, including electrostatic force microscopy and Kelvin probe force microscopy, for measuring surface potential at the nanoscale. The review could provide fundamental information on the probing method of surface potential using atomic force microscopy.
 Keywords
Atmomic force microscopy;Electrostatic force microscopy;Kelvin probe force microscopy;Surface potential;Surface charge;
 Language
English
 Cited by
 References
1.
Coffey D C and Ginger D S (2006) Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 5, 735-740. crossref(new window)

2.
Collins L, Kilpatrick J I, Weber S A L, Tselev A, Vlassiouk I V, Ivanov I N, Jesse S, Kalinin S V, and Rodriguez B J (2013) Open loop Kelvin probe force microscopy with single and multi-frequency excitation. Nanotechnology 24, 475702. crossref(new window)

3.
Ellison D J, Lee B, Podzorov V, and Frisbie C D (2011) Surface potential mapping of SAM-functionalized organic semiconductors by Kelvin probe force microscopy. Adv. Mater. 23, 502-507. crossref(new window)

4.
Gady B, Schleef D, Reifenberer R, Rimai D, and DeMejo L P (1996) Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. Phys. Rev. B 53, 8065-8070. crossref(new window)

5.
Girard P (2001) Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12, 485-490. crossref(new window)

6.
Hong J, Kim Y, Paik H, No K, and Lukes J R (2009) The effect of nitrogen incorporation on surface properties of silicon oxynitride films. Phys. Rapid Res. Lett. 3, 25-27.

7.
Jacobs H O, Knapp H F, and Stemmer A (1999) Practical aspects of Kelvin probe force microscopy. Rev. Sci. Instrum. 70, 1756-1760. crossref(new window)

8.
Kalinin S V and Bonnell D A (2001) Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 125411. crossref(new window)

9.
Kalinin S V and Bonnell D A (2004) Screening phenomena on oxide surfaces and its implications for local electrostatic and transport measurements. Nano Lett. 4, 555-560. crossref(new window)

10.
Kelvin L (1898) Contact electricity of metals. Philos. Mag. 46, 82-120. crossref(new window)

11.
Kim Y, Park M, Buhlmann S, Hong S, Kim Y K, Ko H, Kim J, and No K (2010) Effect of local surface potential distribution on its relaxation in polycrystalline ferroelectric films. J. Appl. Phys. 107, 054103. crossref(new window)

12.
Li G Y, Mao B, Lan F, and Liu L M (2012) Practical aspects of single-pass scan Kelvin probe force microscopy. Rev. Sci. Instrum. 83, 113701. crossref(new window)

13.
Nonnenmacher M, O'Boyle M P, and Wickramasinghe H K (1991) Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921-2923. crossref(new window)

14.
Palermo V, Palma M, and Samori P (2006) Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv. Mater. 18, 145-164. crossref(new window)

15.
Sadewasser S (2012) Experimental technique and working modes. In: Kelvin Probe Force Microscopy, ed. Glatzel T, pp. 7-24, (Springer, Heidelberg).

16.
Takahashi T, Kawamukai T, Ono S, Noda T, and Sakaki H (2000) Kelvin probe force microscopy on InAs thin films on (110) GaAs substrates. Jpn. J. Appl. Phys. 39, 3721-3723. crossref(new window)

17.
Takeuchi O, Ohrai Y, Yoshida S, and Shigekawa H (2007) Kelvin probe force microscopy without bias-voltage feedback. Jpn. J. Appl. Phys. 46, 5626-5630. crossref(new window)

18.
Vasudevan R, Marincel D, Jesse S, Kim Y, Kumar A, Kalinin S, and Trolier-Mckinstry S (2013) Polarization dynamics in ferroelectric capacitors: local perspective on emergent collective behavior and memory effects. Adv. Funct. Mater. 23, 2490-2508. crossref(new window)

19.
Wu Y and Shannon M A (2006) ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: detection and correction. Rev. Sci. Instrum. 77, 043711. crossref(new window)

20.
Yoo H, Bae C, Yang Y, Lee S, Kim M, Kim Y, and Shin H (2014) Spatial charge separation in asymmetric nanostructure of Au nanoparticle on $TiO_2$ nanotube by light-induced surface potential imaging. Nano Lett. 14, 4413-4417. crossref(new window)