Advanced SearchSearch Tips
Electron Tomography and Synapse Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 44, Issue 3,  2014, pp.83-87
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2014.44.3.83
 Title & Authors
Electron Tomography and Synapse Study
Kim, Hyun-Wook; Kim, Dasom; Rhyu, Im Joo;
  PDF(new window)
Electron tomography (ET) is a useful tool to investigate three-dimensional details based on virtual slices of relative thick specimen, and it requires complicated procedures consisted of image acquisition steps and image processing steps with computer program. Although the complicated step, this technique allows us to overcome some limitations of conventional transmission electron microscopy: (1) overlapping of information in the ultrathin section covering from 30 nm to 90 nm when we observe very small structures, (2) fragmentation of the information when we study larger structures over 100 nm. There are remarkable biological findings with ET, especially in the field of neuroscience, although it is not popular yet. Understanding of behavior of synaptic vesicle, active zone, pooling and fusion in the presynaptic terminal have been enhanced thanks to ET. Some sophisticated models of postsynaptic density with ET and immune labeling are introduced recently. In this review, we introduce principles, practical steps of ET and some recent researches in synapse biology.
Synapse;Neuroscience;Synaptic vesicle;Pooling;Postsynaptic density;
 Cited by
Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs,;;;;

Applied Microscopy, 2016. vol.46. 3, pp.134-139 crossref(new window)
Reconstruction of Neural Circuits Using Serial Block-Face Scanning Electron Microscopy,;;;

Applied Microscopy, 2016. vol.46. 2, pp.100-104 crossref(new window)
Burette A C, Lesperance T, Crum J, Martone M, Volkmann N, Ellisman M H, and Weinberg R J (2012) Electron tomographic analysis of synaptic ultrastructure. J. Comp. Neurol. 520, 2697-2711. crossref(new window)

Chen X, Winters C, and Reese R (2008) Life inside a thin section: tomography. J. Neurosci. 28, 9321-9327. crossref(new window)

Fernandez-Busnadiego R, Asano S, Oprisoreanu A M, Sakata E, Doengi M, Kochovski Z, Zurner M, Stein V, Schoch S, Baumeister W, and Lucic V (2013) Cryo-electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering. J. Cell Biol. 201, 725-740. crossref(new window)

Fernandez-Busnadiego R, Schrod N, Kochovski Z, Asano S, Vanhecke D, Baumeister W, and Lucic V (2011) Insights into the molecular organization of the neuron by cryo-electron tomography. J. Electron Microsc. (Tokyo) 60 Suppl 1, S137-S148. crossref(new window)

Fernandez-Busnadiego R, Zuber B, Maurer U, Cyrklaff M, Baumeister W, and Lucic V (2010) Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188, 145-156. crossref(new window)

Frey T G, Perkins G A, and Ellisman M H (2006) Electron tomography of membrane-bound cellular organelles. Annu. Rev. Biophys. Biomol. Struct. 35, 199-224. crossref(new window)

Jou H T, Lee S, and Kim H J (2013) Improvement of alignment accuracy in electron tomography. Appl. Microsc. 43, 1-8. crossref(new window)

Kim H W, Oh S H, Kim N, Nakazawa E, and Rhyu I J (2013) Rapid method for electron tomographic reconstruction and three-dimensional modeling of the murine synapse using an automated fiducial markerfree system. Microsc. Microanal. 19 Suppl 5, 182-187.

Kim J W, Lee S J, and Rhyu I J (2007) Construction of anaglyphic stereo pair image using Adobe Photoshop program. Korean J. Microsc. 37, 143-146.

Landis D, Hall A, Weinstein L, and Reese T (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201-209. crossref(new window)

Lee K J, Kim H, Kim T S, Park S H, and Rhyu I J (2004) Morphological analysis of spine shapes of Purkinje cell dendrites in the rat cerebellum using high-voltage electron microscopy. Neurosci. Lett. 359, 21-24. crossref(new window)

Lucic V, Kossel A H, Yang T, Bonhoeffer T, Baumeister W, and Sartori A (2007) Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160, 146-156. crossref(new window)

Lucic V, Yang T, Schweikert G, Forster F, and Baumeister W (2005) Morphological characterization of molecular complexes present in the synaptic cleft. Structure 13, 423-434. crossref(new window)

McIntosh R, McIntosh R, Nicastro D, and Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15, 43-51. crossref(new window)

Mun J Y, Lee K E, and Han S S (2008) Techniques for cryo-electron tomography in biological field. Korean J. Microsc. 38, 73-79.

Palade G and Palay S L (1954) Electron microscope observations of interneuronal and neuromuscular synapses. Anat. Rec. 118, 335-336.

Rhyu I J and Park S N (2008) A glance of electron tomography through 4th international congress on electron tomogrpaphy. Korean J. Microsc. 38, 275-278.

Scout M C, Chen C C, Mecklenburg M, Zhu C, Xu R, Ercius P, Dahmen U, Regan B C, and Miao J (2012) Electron tomography at 2.4-angstrom resolution. Nature 483, 444-447. crossref(new window)

Siksou L, Rostaing P, Lechaire J P, Boudier T, Ohtsuka T, Fejtov A, Kao H T, Greengard P, Gundelfinger E, Triller A, and Marty S (2007) Threedimensional architecture of presynaptic terminal cytomatrix. J. Neurosci. 27, 6868-6877. crossref(new window)

Siksou L, Varoqueaux F, Pascual O, Triller A, Brose N, and Marty S (2009) A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur. J. Neurosci. 30, 49-56. crossref(new window)