JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Silicene on Other Two-dimensional Materials: Formation of Heterostructure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 44, Issue 4,  2014, pp.123-132
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2014.44.4.123
 Title & Authors
Silicene on Other Two-dimensional Materials: Formation of Heterostructure
Kim, Jung Hwa; Lee, Zonghoon;
  PDF(new window)
 Abstract
Silicene is one of the most interesting two-dimensional materials, because of not only the extraordinary properties similar to graphene, but also easy compatibility with existing silicon-based devices. However, non-existing graphitic-like structure on silicon and unstable free-standing silicene structure leads to difficulty in commercialization of this material. Therefore, substrates are essential for silicene, which affects various properties of silicene and supporting unstable structure. For maintaining outstanding properties of silicene, van der Waals bonding between silicene and substrate is essential because strong interaction, such as silicene with metal, breaks the band structure of silicene. Therefore, we review the stability of silicene on other two-dimensional materials for van der Waals bonding. In addition, the properties of silicene are reviewed for silicene-based heterostructure.
 Keywords
Silicene;Two-dimensional materials;Heterostructure;Band gap;van der Waals;
 Language
English
 Cited by
1.
Pseudo Jahn-Teller effect in oxepin, azepin, and their halogen substituted derivatives, Russian Journal of Physical Chemistry A, 2017, 91, 9, 1743  crossref(new windwow)
 References
1.
Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, and Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102. crossref(new window)

2.
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, and Lau C N (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907. crossref(new window)

3.
Borensztein Y, Prevot G, and Masson L (2014) Large differences in the optical properties of a single layer of Si on Ag(110) compared to silicene. Phys. Rev. B 89, 245410. crossref(new window)

4.
Cahangirov S, Ozcelik V O, Xian L D, Avila J, Cho S, Asensio M C, Ciraci S, and Rubio A (2014) Atomic structure of the root 3 $\times$ root 3 phase of silicene on Ag(111). Phys. Rev. B 90, 035448. crossref(new window)

5.
Cahangirov S, Topsakal M, Akturk E, Sahin H, and Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804. crossref(new window)

6.
Chang H R, Zhou J H, Zhang H, and Yao Y G (2014) Probing the topological phase transition via density oscillations in silicene and germanene. Phys. Rev. B 89, 201411. crossref(new window)

7.
Chavez-Castillo M R, Rodriguez-Meza M A, and Meza-Montes L (2012) 2D radial distribution function of silicene. Rev. Mex. Fis. 58, 139-143.

8.
Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, and Meng S (2013) Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys. Rev. Lett 110, 085504. crossref(new window)

9.
Chen M X and Weinert M (2014) Revealing the substrate origin of the linear dispersion of silicene/Ag(111). Nano Lett. 14, 5189-5193. crossref(new window)

10.
Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, and Molle A (2014) Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 26, 2096-2101. crossref(new window)

11.
De Padova P, Quaresima C, Olivieri B, Perfetti P, and Le Lay G (2011) sp(2)-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl. Phys. Lett. 98, 081909. crossref(new window)

12.
Ding Y and Ni J (2009) Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 95, 083115. crossref(new window)

13.
Drummond N D, Zolyomi V, and Fal'ko V I (2012) Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423. crossref(new window)

14.
Dzade N Y, Obodo K O, Adjokatse S K, Ashu A C, Amankwah E, Atiso C D, Bello A A, Igumbor E, Nzabarinda S B, Obodo J T, Ogbuu A O, Femi O E, Udeigwe J O, and Waghmare U V (2010) Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet. J. Phys-Condens. Mat. 22, 375502. crossref(new window)

15.
Ezawa M (2012a) Topological phase transition and electrically tunable diamagnetism in silicene. Eur. Phys. J. B 85, 363. crossref(new window)

16.
Ezawa M (2012b) A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003. crossref(new window)

17.
Ezawa M (2013) Hexagonally warped Dirac cones and topological phase transition in silicene superstructure. Eur. Phys. J. B 86, 139. crossref(new window)

18.
Fuhrer M S, Lau C N, and MacDonald A H (2010) Graphene: materially better carbon. MRS Bull. 35, 289-295. crossref(new window)

19.
Gao J F and Zhao J J (2012) Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface. Sci. Rep-Uk. 2, 861. crossref(new window)

20.
Gao N, Li J C, and Jiang Q (2014a) Bandgap opening in silicene: effect of substrates. Chem. Phys. Lett. 592, 222-226. crossref(new window)

21.
Gao N, Li J C, and Jiang Q (2014b) Tunable band gaps in silicene-MoS2 heterobilayers. Phys. Chem. Chem. Phys. 16, 11673-11678. crossref(new window)

22.
Guo Z X and Oshiyama A (2014) Structural tristability and deep Dirac states in bilayer silicene on Ag(111) surfaces. Phys. Rev. B 89, 155418. crossref(new window)

23.
Houssa M, van den Broek B, Scalise E, Pourtois G, Afanasev V V, and Stesmans A (2013) An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 15, 3702-3705. crossref(new window)

24.
Johnson N W, Vogt P, Resta A, De Padova P, Perez I, Muir D, Kurmaev E Z, Le Lay G, and Moewes A (2014) The metallic nature of epitaxial silicene monolayers on Ag(111). Adv. Funct. Mater. 24, 5253-5259. crossref(new window)

25.
Jose D and Datta A (2011) Structures and electronic properties of silicene clusters: a promising material for FET and hydrogen storage. Phys. Chem. Chem. Phys. 13, 7304-7311. crossref(new window)

26.
Jose D and Datta A (2012) Understanding of the buckling distortions in silicene. J. Phys. Chem. C 116, 24639-24648. crossref(new window)

27.
Jose D and Datta A (2014) Structures and chemical properties of silicene:unlike graphene. Accounts Chem. Res. 47, 593-602. crossref(new window)

28.
Kaloni T P, Tahir M, and Schwingenschlogl U (2013a) Quasi free-standing silicene in a superlattice with hexagonal boron nitride. Sci. Rep-Uk. 3, 3192. crossref(new window)

29.
Kaloni T P, Gangopadhyay S, Singh N, Jones B, and Schwingenschlogl U (2013b) Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 88, 235418. crossref(new window)

30.
Kaltsas D, Tsetseris L, and Dimoulas A (2014) Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures. Appl. Surf. Sci. 291, 93-97. crossref(new window)

31.
Kamal C, Chakrabarti A, and Banerjee A (2014) Ab initio investigation on hybrid graphite-like structure made up of silicene and boron nitride. Phys. Lett. A 378, 1162-1169. crossref(new window)

32.
Kara A, Leandri C, Davila M, Padova P, Ealet B, Oughaddou H, Aufray B, and Lay G (2009) Physics of silicene stripes. J. Supercond. Nov. Magn. 22, 259-263. crossref(new window)

33.
Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M, and Takagi N (2014) Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction. Surf. Sci. 623, 25-28. crossref(new window)

34.
Li G H, Tan J, Liu X D, Wang X P, Li F, and Zhao M W (2014b) Manifold electronic structure transition of hybrid silicane-silicene nanoribbons. Chem. Phys. Lett. 595, 20-24.

35.
Li L Y, Wang X P, Zhao X Y, and Zhao M W (2013a) Moire superstructures of silicene on hexagonal boron nitride: a first-principles study. Phys. Lett. A 377, 2628-2632. crossref(new window)

36.
Li L Y and Zhao M W (2014) Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 118, 19129-19138. crossref(new window)

37.
Li S, Wu Y F, Liu W, and Zhao Y H (2014a) Control of band structure of van der Waals heterostructures: silicene on ultrathin silicon nanosheets. Chem. Phys. Lett. 609, 161-166. crossref(new window)

38.
Li X D, Mullen J T, Jin Z H, Borysenko K M, Nardelli M B, and Kim K W (2013b) Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418. crossref(new window)

39.
Li X D, Wu S Q, Zhou S, and Zhu Z Z (2014c) Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res. Lett. 9, 110. crossref(new window)

40.
Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, and Takagi N (2013) Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110, 076801. crossref(new window)

41.
Lin X Q and Ni J (2012) Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study. Phys. Rev. B 86, 075440. crossref(new window)

42.
Liu H S, Gao J F, and Zhao J J (2013) Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117, 10353-10359. crossref(new window)

43.
Liu J J and Zhang W Q (2013) Bilayer silicene with an electrically-tunable wide band gap. Rsc. Adv. 3, 21943-21948. crossref(new window)

44.
Liu Z L, Wang M X, Liu C H, Jia J F, Vogt P, Quaresima C, Ottaviani C, Olivieri B, De Padova P, and Le Lay G (2014a) The fate of the 2 root 3 $\times$ 2 root 3 R(30 degrees) silicene phase on Ag(111). Apl. Mater. 2, 092513. crossref(new window)

45.
Liu Z L, Wang M X, Xu J P, Ge J F, Le Lay G, Vogt P, Qian D, Gao C L, Liu C H, and Jia J F (2014b) Various atomic structures of monolayer silicene fabricated on Ag(111). New J. Phys. 16, 075006. crossref(new window)

46.
Ma Y D, Dai Y, Guo M, Niu C W, and Huang B B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883-3887. crossref(new window)

47.
Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, and Carbone C (2014) Silicene on Ag(111): a honeycomb lattice without Dirac bands. Phys. Rev. B 89, 201416. crossref(new window)

48.
Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, and Gao H J (2013) Buckled silicene formation on Ir(111). Nano Lett. 13, 685-690. crossref(new window)

49.
Moras P, Mentes T O, Sheverdyaeva P M, Locatelli A, and Carbone C (2014) Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys-Condens. Mat. 26, 185001. crossref(new window)

50.
Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, and Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett. 12, 113-118. crossref(new window)

51.
Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J, and Gao H J (2014) Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene. Small 10, 2215-2225. crossref(new window)

52.
Pflugradt P, Matthes L, and Bechstedt F (2014a) Unexpected symmetry and AA stacking of bilayer silicene on Ag(111). Phys. Rev. B 89, 205428. crossref(new window)

53.
Pflugradt P, Matthes L, and Bechstedt F (2014b) Silicene on metal and metallized surfaces: ab initio studies. New J. Phys. 16, 075004. crossref(new window)

54.
Qin R, Zhu W J, Zhang Y L, and Deng X L (2014) Uniaxial strain-induced mechanical and electronic property modulation of silicene. Nanoscale Res. Lett. 9, 521. crossref(new window)

55.
Quhe R G, Yuan Y K, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, Yu D P, Yang J B, and Lu J (2014) Does the Dirac cone exist in silicene on metal substrates? Sci. Rep-Uk. 4, 5476.

56.
Quhe R G, Zheng J X, Luo G F, Liu Q H, Qin R, Zhou J, Yu D P, Nagase S, Mei W N, Gao Z X, and Lu J (2012) Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. Npg. Asia Mater. 4, e6. crossref(new window)

57.
Sahin H and Peeters F M (2013) Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 87, 085423. crossref(new window)

58.
Sahin H, Sivek J, Li S, Partoens B, and Peeters F M (2013) Stone-Wales defects in silicene: formation, stability, and reactivity of defect sites. Phys. Rev. B 88, 045434. crossref(new window)

59.
Scalise E, Cinquanta E, Houssa M, van den Broek B, Chiappe D, Grazianetti C, Pourtois G, Ealet B, Molle A, Fanciulli M, Afanas'ev V V, and Stesmans A (2014) Vibrational properties of epitaxial silicene layers on (111) Ag. Appl. Surf. Sci. 291, 113-117. crossref(new window)

60.
Shao Z G, Ye X S, Yang L, and Wang C L (2013) First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114, 093712. crossref(new window)

61.
Shirai T, Shirasawa T, Hirahara T, Fukui N, Takahashi T, and Gasegawa S (2014) Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface (vol 89, 241403, 2014). Phys. Rev. B 90, 039902.

62.
Sone J, Yamagami T, Aoki Y, Nakatsuji K, and Hirayama H (2014) Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys. 16, 095004. crossref(new window)

63.
Song Y L, Zhang S, Lu D B, Xu H R, Wang Z, Zhang Y, and Lu Z W (2013) Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. Eur. Phys. J. B 86, 488. crossref(new window)

64.
Tchalala M R, Enriquez H, Yildirim H, Kara A, Mayne A J, Dujardin G, Ali M A, and Oughaddou H (2014) Atomic and electronic structures of the (root 13 $\times$ root 13)R13.9 degrees of silicene sheet on Ag(111). Appl. Surf. Sci. 303, 61-66. crossref(new window)

65.
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, and Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501. crossref(new window)

66.
Voon L C L Y and Guzman-Verri G G (2014) Is silicene the next graphene? MRS Bull. 39, 366-373. crossref(new window)

67.
Yuan Y K, Quhe R G, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, and Lu J (2014) Strong band hybridization between silicene and Ag(111) substrate. Physica E 58, 38-42. crossref(new window)

68.
Zhou M, Li R S, Zhou J Y, Guo X S, Liu B, Zhang Z X, and Xie E Q (2009) Growth and characterization of aligned ultralong and diametercontrolled silicon nanotubes by hot wire chemical vapor deposition using electrospun poly(vinyl pyrrolidone) nanofiber template. J. Appl. Phys. 106, 124315. crossref(new window)