Advanced SearchSearch Tips
Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 44, Issue 4,  2014, pp.133-137
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2014.44.4.133
 Title & Authors
Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method
Cho, Youngji; Yang, Jun-Mo; Lam, Do Van; Lee, Seung-Mo; Kim, Jae-Hyun; Han, Kwan-Young; Chang, Jiho;
  PDF(new window)
We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.
Graphene;Transmission electron microscopy;Specimen preparation;
 Cited by
Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K, and Crommie M F (2007) Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 91, 122102. crossref(new window)

Dedkov Y S, Fonin M, Rüdiger U, and Rashba C L (2008) Effect in the graphene/Ni(111) gystem. Phys. Rev. Lett. 100, 107602. crossref(new window)

Geim A K (2009) Graphene: status and prospects. Science 324, 1530-1534. crossref(new window)

Geim A K and Novoselov K S (2007) The rise of graphene. Nature Mat. 6, 183. crossref(new window)

Han S A, Choi I S, An H S, Lee H, Yong H D, Lee S, Jung J, Lee N S, and Seo Y (2011) Ridge formation and removal via annealing in exfoliated graphene. J. Nanosci. Nanotechnol. 11, 5949-5954. crossref(new window)

Huang P Y, Ruiz-Vargas C S, Van Der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, and Muller D A (2011) Grains and grain boundaries in singlelayer graphene atomic patchwork quilts. Nature 469, 389. crossref(new window)

Li X, Cai W, An J, Kim S, Nah S, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee K, Colombo L, and Ruoff R S (2009) Large-area uniform graphene films on copper foils. Science 324, 1312. crossref(new window)

Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, and Kaiser U (2013) Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys. Rev. Lett. 110, 239902. crossref(new window)

Qi Y, Rhim S H, Sun G F, Weinert M, and Li L (2010) Epitaxial graphene on SiC(0001): more than just honeycombs. Phys. Rev. Lett. 105, 085502. crossref(new window)

Regan W, Alem N, Alemán B, Geng B, Girit Ç, Maserati L, Wang F, Crommie M, and Zettl A (2010) A direct transfer of layer-area graphene. Appl. Phys. Lett. 96, 113102. crossref(new window)

Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, and Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30. crossref(new window)

Zhang Y, Small J P, Pontius W V, and Kim P (2005) Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104. crossref(new window)