JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristic X-ray Spectrum Analysis of Micro-Sized SiC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Applied Microscopy
  • Volume 46, Issue 1,  2016, pp.27-31
  • Publisher : Korean Society of Electron Microscopy
  • DOI : 10.9729/AM.2016.46.1.27
 Title & Authors
Characteristic X-ray Spectrum Analysis of Micro-Sized SiC
Miyoshi, Noriko; Mao, Weiji; Era, Hidenori; Shimozaki, Toshitada; Shinozaki, Nobuya;
  PDF(new window)
 Abstract
It has been investigated what kind of characteristic X-ray in electron probe micro-analyzer (EPMA) is effective for the determination of compounds of Si series materials. After comparing the characteristic X-rays among the primary and secondary lines in and obtained from the Si series standard samples, it was found that the secondary line of exhibited the most informative spectrum although the intensity was considerably weak. As a result of analyzing the spectrum shapes of the Si series standard samples, the spectrum shape of the secondary line of for SiC was different from those for other Si compounds. To grasp the characteristics of the shape, a line was perpendicularly drawn from the peak top to base line in order to divide a spectrum into two areas. The area ratio of right to left was defined to call as the asymmetry index here. As a result, the asymmetry index value of the SiC was greater than one, while those of other Si compounds were less than one. It was found from the EPMA analysis that identification of SiC became successful to distinguish from other Si compounds and this method was applicable for micro-sized compounds in a practical composite material.
 Keywords
Electron probe micro-analyzer;Characteristic X-ray;Chemical state;Asymmetry index;Silicon carbide;
 Language
English
 Cited by
 References
1.
Abe Y, Abe Y, and Nakamura T (2001) Typical characteristic X-ray line shapes obtained by EPMA. J. Surf. Anal. 8, 160-163.

2.
Honma K, Kimura T, Kawasaki Y, and Hiroyoshi S (1974) Chemical state analysis of iron oxide by X-ray micro analyzer. Bunseki Kagaku 23, 591-597. crossref(new window)

3.
Kinouchi S (2001) Electron Prove.Micro Analyzer (Gijutsushoin, Tokyo).

4.
Murakami H, Kimata M, and Shimoda S (1991) Native copper included by anorthite from the island of Miyakejima: implications for arc magmatism, J. Min. Petr. Econ. Geol. 86, 364-374. crossref(new window)

5.
Nishimura T (2007) Corrosion behavior of silicon-bearing steel in a wet/dry environment containing chloride ions. Mater. Trans. 48, 1438-1443. crossref(new window)

6.
Ohtsuka Y (1982) Wavelength shift of CuL X-ray emission spectra of copper sulfides. Mineral. J. 11, 32-34. crossref(new window)

7.
Soejima H (1987) Electron Probe Microanalysis (Nikkan Kogyo Shimbun, Tokyo).

8.
The Surface Science Society of Japan (1998) Electron Prove.Micro Analyzer (Maruzen, Tokyo).

9.
Uchikawa H and Numata M (1973) X-ray spectroscopy for chemical bonding on oxygen, chromium and manganese compounds. Yogyo Kyokaishi 81, 189-196. crossref(new window)

10.
Watanabe A, Ohira G, and Muto K (1970) Quantitative electron prove microanalysis of high temperature oxidation scales of iron alloyS. Imono. 42, 21-31.