JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Implanted and Annealed Antimony Profiles in Amorphous and Single Crystalline Silicon Using 10~50 keV Energy Bombardment
Jung, Won-Chae;
  PDF(new window)
 Abstract
For the formation of doping, the antimony ions are mainly used for the fabrication of a BJT (bipolar junction transistor), CMOS (complementary metal oxide semiconductor), FET (field effect transistor) and BiCMOS (bipolar and complementary metal oxide semiconductor) process integration. Antimony is a heavy element and has relatively a low diffusion coefficient in silicon. Therefore, antimony is preferred as a candidate of ultra shallow junction for n type doping instead of arsenic implantation. Three-dimensional (3D) profiles of antimony are also compared one another from different tilt angles and incident energies under same dimensional conditions. The diffusion effect of antimony showed ORD (oxygen retarded diffusion) after thermal oxidation process. The interfacial effect of a is influenced antimony diffusion and showed segregation effects during the oxidation process. The surface sputtering effect of antimony must be considered due to its heavy mass in the case of low energy and high dose conditions. The range of antimony implanted in amorphous and crystalline silicon are compared each other and its data and profiles also showed and explained after thermal annealing under inert gas and dry oxidation.
 Keywords
Antimony implantation;ORD;Diffusion;Sputtering;Computer simulation;
 Language
Korean
 Cited by
 References
1.
T. Alzanki, K. M. Kandil, N. Bennett, B. J. Sealy, M. R. Alenezi, A. Almeshal, M. Jafar, and A. Ghoneim, SOJ Mat. Sci. Eng., 2, 1 (2014).

2.
N. S. Benett, N. E. B. Cowern, A. J. Smith, R. M. Gwilliam, B, J. Sealy, L. O'Reilly, P. J. McNally, G. Cooke, and H. Kheyrandish, Appl. Phys. Lett., 89, 182122 (2006). [DOI: http://dx.doi.org/10.1063/1.2382741] crossref(new window)

3.
R. Low, B. J. Sealy, and R. Gwilliam, J. Appl. Phys., 95, 5471 (2004). [DOI: http://dx.doi.org/10.1063/1.1702096] crossref(new window)

4.
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

5.
J. F. Ziegler, SRIM 2013 Manual, http://www.srim.org/.

6.
W. Moller and W. Eckstein, Nucl. Insrum. Methods B, 2, 814 (1984). [DOI: http://dx.doi.org/10.1016/0168-583X(84)90321-5] crossref(new window)

7.
W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991). [DOI: http://dx.doi.org/10.1007/978-3-642-73513-4] crossref(new window)

8.
H. Ryssel, J. Lorenz, and W. Kreuger, Nucl. Insrum. Methods, B19, 45, (1987). [DOI: http://dx.doi.org/10.1016/S0168-583X(87)80012-5] crossref(new window)

9.
User's Guide, ICECREM Manual (1996).

10.
C. Park, K. M. Klein, and A.L.F. Tasch, Solid State Electonics, 33, 645 (1990). [DOI: http://dx.doi.org/10.1016/0038-1101(90)90176-F] crossref(new window)

11.
C. Park, K. M. Klein, and A.L.F. Tasch, IEEE Trans. Electron Dev., 39, 1614 (1992). [DOI: http://dx.doi.org/10.1109/16.141226] crossref(new window)