JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Photoinduced Hydrophilicity of Heterogeneous TiO2/WO3 Double Layer Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Photoinduced Hydrophilicity of Heterogeneous TiO2/WO3 Double Layer Films
Oh, Ji-Yong; Lee, Byung-Roh; Kim, Hwa-Min; Lee, Chang-Hyun;
  PDF(new window)
 Abstract
The photoinduced hydrophilicity of double layer films was fabricated by using a conventional rf-magnetron sputtering method. The photoinduced hydrophilic reaction of the surface was enhanced by the presence of under the layer by irradiation of a 10 W cylindrical fluorescent light bulb. However, when the and layers were separated by an insulating layer, the surface did not appeared high hydrophilic, under the same light bulb. The enhanced photoinduced hydrophilic reaction can be explained by the charge transfer between and layers. It was also demonstrated that visible light passing through the layer could excite . Thus, visible light can be used for the hydrophilic reaction in the present system.
 Keywords
;;Double layer;Photo induced hydrophilicity;Indoor lights;
 Language
Korean
 Cited by
 References
1.
K. Honda and A. Fujishim, Nature, 238, 37 (1972). [DOI: http://dx.doi.org/10.1038/238037a0] crossref(new window)

2.
A. Heller, Acc. Chem. Res., 28, 141 (1995). [DOI: http://dx.doi.org/10.1021/ar00060a006] crossref(new window)

3.
A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). [DOI: http://dx.doi.org/10.1021/cr00035a013] crossref(new window)

4.
A. Fujishima, K. Hashimoto, and T. Watanabe, Fundamentals and Applications (BKC, Inc., 1999) p. 14.

5.
T. Kawai and T. Sakata, Nature, 286, 474 (1980). [DOI: http://dx.doi.org/10.1038/286474a0] crossref(new window)

6.
I. Rosenberg, Brock, and A. J. Heller, Phys. Chem., 96, 3523 (1992). [DOI: http://dx.doi.org/10.1021/j100196a061] crossref(new window)

7.
A. Mills and S.L.J. Hunte, Photochem Photobiol A Chem., 108, 1 (1997). [DOI: http://dx.doi.org/10.1016/S1010-6030(97)00118-4] crossref(new window)

8.
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature, 388, 431 (1997). [DOI: http://dx.doi.org/10.1038/41233] crossref(new window)

9.
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater., 10, 135 (1998). [DOI: http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M] crossref(new window)

10.
N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, Langmuir, 14, 5918 (1998). [DOI: http://dx.doi.org/10.1021/la980623e] crossref(new window)

11.
R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x] crossref(new window)

12.
T. Watanabe, A. Nakajima, R. Wang, Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, Thin Solid Films, 351, 260 (1999). [DOI: http://dx.doi.org/10.1016/S0040-6090(99)00205-9] crossref(new window)

13.
M. Miyauchi, A, Nakajima, A, Fujishima, K, Hashimoto, and T. Watanabe, Chem. Mater., 12, 3 (2000). [DOI: http://dx.doi.org/10.1021/cm990556p] crossref(new window)

14.
A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis Fundamentals and Applications (BKC Inc., Tokyo, Japan, 1999).

15.
N. Serpone, E. Borgarello, and M. J. Gratzel, Chem. Soc., Chem. Commun., 342 (1984). [DOI: http://dx.doi.org/10.1039/c39840000342] crossref(new window)

16.
N. Serpone, P, Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A, 85, 247 (1995). [DOI: http://dx.doi.org/10.1016/1010-6030(94)03906-B] crossref(new window)

17.
I. Bedja and P. V. Kamat, J. Phys. Chem., 99, 9182 (1995). [DOI: http://dx.doi.org/10.1021/j100022a035] crossref(new window)

18.
A. Hattori, Y. Tokihisa, H. Tada, and S. Ito, J. Electro Chem. Soc., 147, 2279 (2000). [DOI: http://dx.doi.org/10.1149/1.1393521] crossref(new window)

19.
H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 4585 (2000). [DOI: http://dx.doi.org/10.1021/jp000049r] crossref(new window)

20.
Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, and J. Yao, Chem. Mater., 12, 3445 (2000). [DOI: http://dx.doi.org/10.1021/cm0004432] crossref(new window)

21.
L. Shi, C. Li, H. Gu, and D. Fang, Mater. Chem. Phys., 62, 62 (2000). [DOI: http://dx.doi.org/10.1016/S0254-0584(99)00171-6] crossref(new window)

22.
A. D. Paola, L. Palmisano, A. M. Venezia, and V. J. Augugliaro, Phys. Chem. B, 103, 8236 (1999). [DOI: http://dx.doi.org/10.1021/jp9911797] crossref(new window)

23.
G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, and A. M Venezia, J. Phys. Chem. B, 105, 1026 (2001). [DOI: http://dx.doi.org/10.1021/jp003172r] crossref(new window)

24.
Y. R. Do, W. Lee, K. Dwight, and A. Wold, J. Solid State Chem., 108, 198 (1994). [DOI: http://dx.doi.org/10.1006/jssc.1994.1031] crossref(new window)

25.
C. Martin, G. Solana, V. Rives, G. Marci, L. Palmisano, and A. Sclafami, J. Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200373] crossref(new window)

26.
Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, and Y. R. Do, J. Catal., 191, 192 (2000). [DOI: http://dx.doi.org/10.1006/jcat.1999.2776] crossref(new window)

27.
K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, and W. I. Lee, Chem. Mater., 13, 2349 (2001). [DOI: http://dx.doi.org/10.1021/cm000858n] crossref(new window)

28.
G. Marci, L. Palmisano, A. Sclafani, A. M. Venezia, R. Campostrini, G. Carturan, C. Martin, V. Rives, and G. J. Solana, Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200819] crossref(new window)

29.
I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 145, 3981 (1998). [DOI: http://dx.doi.org/10.1149/1.1838902] crossref(new window)

30.
I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 146, 243 (1999). [DOI: http://dx.doi.org/10.1149/1.1391593] crossref(new window)

31.
M. Callies, Y. Chen, F. Marty, A. Pepin, and D. Quere, Microelectron. Eng., 78, 100 (2005). [DOI: http://dx.doi.org/10.1016/j.mee.2004.12.093] crossref(new window)

32.
B. Bhushan, Y. C. Jung, and K. Koch, (Phil. Trans. R. Soc. A, 367, 2009) p. 1631. [DOI: http://dx.doi.org/10.1098/rsta.2009.0014] crossref(new window)

33.
R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and H. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x] crossref(new window)

34.
M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Chem. Mater., 14, 2812 (2002). [DOI: http://dx.doi.org/10.1021/cm020076p] crossref(new window)

35.
K. Ishibashi, Y. Nosaka, K. Hashimoto, and A. Fujishima, J. Phys. Chem. B, 102, 2117 (1998). [DOI: http://dx.doi.org/10.1021/jp973401i] crossref(new window)

36.
K. Ikeda, R. Baba, K. Hashimoto, and A. Fujishima, J. Phys. Chem., 101, 2617 (1997). [DOI: http://dx.doi.org/10.1021/jp9627281] crossref(new window)

37.
N. Sakai, A. Fuhishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 105, 3023 (2001). [DOI: http://dx.doi.org/10.1021/jp003212r] crossref(new window)