Advanced SearchSearch Tips
Organic Compounds Vapor Detection Properties of MWCNT/PMMA Composite Film Detector
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Organic Compounds Vapor Detection Properties of MWCNT/PMMA Composite Film Detector
Lim, Young Taek; Shin, Paik-Kyun; Lee, Sunwoo;
  PDF(new window)
In this paper, we fabricated organic compounds detector using the MWCNT/PMMA (multi-walled carbon nanotube / polymethylmethacrylate) composite film. We used polymer film as a matrix material for the device framework, and introduced CNTs for reacting with the organic compounds resulting in changing electrical conductivity. Spray coating method was used to form the MWCNT/PMMA composite film detector, and pattern formation of the detector was done by shadow mask during the spray coating process. We investigated changes of electrical conductivity of the detector before and after the organic compounds exposure. Electrical conductivity of the detector tended to decrease after the exposure with various organic compounds such as acetone, tetrahydrofuran (THF), toluene, and dimethylformamide (DMF). Finally we conclude that organic compounds detection by the MWCNT/PMMA composite film detector was possible, and expect the feasibility of commercial MWCNT/PMMA composite film detector for various organic compounds.
Organic compounds detection;MWCNT/PMMA composite film detector;Spray coating;Change of electrical conductivity;
 Cited by
H. K. Yoo, J. C. Park, and E. G. Lee, Architecture Institute of Korea, 21, 141 (2015).

R. F. Hejazi, T. Husain, and F. I. Khan, J. of Hazard. Mater., B99, 287 (2003). [DOI:] crossref(new window)

J. L. Domingo and M. Nadal, Environ. Int., 35, 382 (2009). [DOI:] crossref(new window)

C. Ge, C. Xie, and S. Cai, Mat. Sci. Eng. B-Solid, 137, 53 (2007). [DOI:] crossref(new window)

G. G. Huang, C. T. Wang, H. T. Tang, Y. S. Huang, and J. Yang, Anal. Chem., 78, 2397 (2006). [DOI:] crossref(new window)

K. Kanda and T. Maekawa, Sensor. Actuat. B-Chem., 108, 97 (2005). [DOI:] crossref(new window)

C. Dekker, Phys. Today, 5, 22 (1999).

D. Janas, A. P. Herman, S. Boncel, and K.K.K. Koziol, Carbon, 73, 225 (2014). [DOI:] crossref(new window)

S. Peng, K. Cho, P. Qi, and H. Dai, Chem. Phys. Lett., 387, 271 (2004). [DOI:] crossref(new window)

A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Compos. Sci. Technol., 62, 1993 (2002). [DOI:] crossref(new window)

H. H. So, J. W. Cho, and N. G. Sahoo, Eur. Polym. J., 43, 3750 (2007). [DOI:] crossref(new window)

L. Valentini, J. Biagiotti, J. M. Kenny, and S. Santucci, Compos. Sci. Technol., 63, 1149 (2003). [DOI:] crossref(new window)

H. W. Goh, S. H. Goh, G. Q. Xu, K. P. Pramoda, and W. D. Zhang, Chem. Phys. Lett., 373, 277 (2003). [DOI:] crossref(new window)

P. C. Ma, B. Z. Tang, and J. K. Kim, Carbon, 46, 1497 (2008). [DOI:] crossref(new window)

B. Hu1, N. Hu, Y. Li, K. Akagi, W. Yuan, T. Watanabe, and Y. Cai, Nanoscale Res. Lett., 7, 402 (2012). [DOI:] crossref(new window)

K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, J. Electrochem. Soc., 149, A1058 (2002). [DOI:] crossref(new window)

X. D. Zhou, S. C. Zhang, W. Huebner, and P. D. Ownby, J. Mater Sci., 36, 3759 (2001). [DOI:] crossref(new window)