JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical Characteristics of Dye Sensitized Solar Cell According to Condition of Dye Adsorption
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrical Characteristics of Dye Sensitized Solar Cell According to Condition of Dye Adsorption
Kim, Ji-Woong; Lee, Kyung-Sup; Choi, Yong-Sung;
  PDF(new window)
 Abstract
This paper is designed to find out where power reaches the highest point as the load of solar cells varies. In addition, the current and power were measured when irradiation changes, and the correlation between current and power was investigated. On top of that, experiments were conducted with the light volume kept constant and with the incoming light angle changing in order to figure out the incoming light angle that produces the most power and to conduct analyses. It was ascertained that if the load increases, the current decreases and the voltage increases. Since the power of 0.9828[W] was the highest when measurements were done, it can be said that when a load of 30[%] is applied to the solar cells, they are the most efficient.
 Keywords
DSSC;Solar cell;Irradiation;Dye adsorption;I-V characteristics;
 Language
Korean
 Cited by
 References
1.
A. R. Park, E. M. Jin, and H. B. Gu, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 315 (2012).

2.
J. Lee, J. C. Yang, S. K. Kim, and S. Y. So, Trans. of KIEE, 63, 1312 (2014).

3.
C. H. Shim, Y. G. Kim, D. H. Kim, H. J. Lee, and H. J. Lee, Trans. of KIEE, 60, 114 (2011).

4.
H. C. Ki, S. H. Kim, D. G. Kim, T. U. Kim, H. K. Jin, and S. Y. So, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 902 (2012).

5.
M. Gratzel, Nature, 421, 6923 (2003). [DOI: http://dx.doi.org/10.1038/421586a] crossref(new window)

6.
H. W. Suh, MS Thesis, p. 3, Graduate School of Pusan National University, Busan (2008).

7.
B. Y. Oh, S. K. Kim, and D. G. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 298 (2013).

8.
K. Tennakone, J. Bandara, P.K.M. Bandaranayake, G.R.A. Kumara, and A. Konno, Jpn. J. Appl. Phys., Part 2: Lett., 40, L732 (2001).

9.
G. Rothenberger, P. Comte, and M. Gratzel., Sol. Energ. Mat. Sol. Cells., 58, 321 (1999). [DOI: http://dx.doi.org/10.1016/S0927-0248(99)00015-X] crossref(new window)

10.
F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R, Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, J. Am. Chem. Soc., 130, 10720 (2008). [DOI: http://dx.doi.org/10.1021/ja801942j] crossref(new window)

11.
J. Kim and J. S. Kim, J. Nanosci. Nanotechnol., 11, 7335 (2011). [DOI: http://dx.doi.org/10.1166/jnn.2011.4843] crossref(new window)

12.
B. Hyun, Y. Zhong, A. Bartnik, L. Sun, H. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, and N. F. Borrelli, ACS Nano, 11, 2206 (2008). [DOI: http://dx.doi.org/10.1021/nn800336b] crossref(new window)

13.
S. Y. Park, H. W. Seo, M. K. Son, S. K. Kim, N. Y. Hong, J. Y. Song, K. Prabakar, and H. J. Kim, Trans. KIEE, 62, 208 (2013).

14.
J. W. Kim, MS Thesis, p. 1-38, Graduate School of Dongshin University, Naju (2013).