JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Technology Development Trends of Self-Powered Next Generation Smart Windows
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Technology Development Trends of Self-Powered Next Generation Smart Windows
Pyun, Sun Ho;
  PDF(new window)
 Abstract
Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.
 Keywords
Self-powered smart window;ECW (electrochromic window);VT (visible transmittance);PV (photovoltaics);DSSC;PECC (photoelectrochromic cell);PVCC (photovoltachromic cell);Energy saving;Solar heat gain coefficient;
 Language
Korean
 Cited by
 References
1.
E. Cuce and S. B. Riffat, Renew. Sust. Energ. Rev., 41, 695 (2015). crossref(new window)

2.
Efficient Windows Collaborative, Low-E Coatings, http://www.commercialwindows.org/lowe.php. (2015).

3.
K. Sawyer, Building Technologies Office, U. S. Department of Energy, Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies, 30/74 (2014).

4.
K. Sawyer, Building Technologies Office, U. S. Department of Energy, R&D Roadmap for Emerging Window and Building Envelope Technologies, 30 (2014).

5.
S. K. Deb, S. H. Lee, C. E. Tracy, J. R. Pitts, B. A. Gregg, and H. M. Branz, Electrochimica Acta, 46, 2125 (2001). [DOI: http://dx.doi.org/10.1016/S0013-4686(01)00390-5] crossref(new window)

6.
C. G. Granqvist, Thin Solid Films, 564, 1 (2014). [DOI: http://dx.doi.org/10.1016/j.tsf.2014.02.002] crossref(new window)

7.
S. S. Kalagi, S. S. Malib, D. S. Dalavib, A. I. Inamdarc, H. S. Im, and P. S. Patil, Synthetic Met., 161, 1105 (2011). [DOI: http://dx.doi.org/10.1016/j.synthmet.2011.03.028] crossref(new window)

8.
S. J. You and Y. E. Sung, NICE, 26, 519 (2008).

9.
Smart Windows: Energy Efficiency with a View, http://www.nrel.gov/news/features/feature_detail.cfm/feature_id=1555 (2010).

10.
A. Cannavale, M. Manca, L. D. Marco, R. Grisorio, S. Carallo, G. P. Suranna, and G. Gigli, ACS Appl. Mater. Interfaces, 6, 2415 (2014). [DOI: http://dx.doi.org/10.1021/am404800m] crossref(new window)

11.
D. K. Benson and H. M. Branz, Sol. Energ. Mat. Sol. C, 39, 203 (1995). [DOI: http://dx.doi.org/10.1016/0927-0248(95)00041-0] crossref(new window)

12.
J. N. Bullock, C. Bechinger, D. K. Benson, and H. M. Branz, J. Non-Cryst. Solids, 198, 1163 (1996). [DOI: http://dx.doi.org/10.1016/0022-3093(96)00105-6]

13.
L. M. Huang, C. W. Hu, H. C. Liu, C. Y. Hsu, C. H. Chen, and K. C. Ho, Sol. Energ. Mat. Sol. C., 99, 154 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.036] crossref(new window)

14.
C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, and B. A. Gregg, Nature, 383, 608 (1996). [DOI: http://dx.doi.org/10.1038/383608a0] crossref(new window)

15.
A. Hauch, A. Georg, S. Baumgartner, U. O. Krasovec, and B. Orel, Electrochim. Acta, 46, 2131 (2001). [DOI: http://dx.doi.org/10.1016/S0013-4686(01)00391-7] crossref(new window)

16.
U. O. Krasovec, A. Georg, A. Georg, Volker Wittwer, J. Luther, M. Topic, Sol Energ Mat Sol C, 84, 369 (2004). [DOI: http://dx.doi.org/10.1016/j.solmat.2004.01.043] crossref(new window)

17.
U. O. Kra?ovec, Andre. Georg, Anne. Georg, M. Topic, and G. Drazic, JSST, 36, 45 (2005).

18.
A. Georg and U. O. Krasovec, Thin Solid Films, 502, 246 (2006). [DOI: http://dx.doi.org/10.1016/j.tsf.2005.07.291] crossref(new window)

19.
G. D. Filpo, S. Mormile, F. P. Nicoletta, and G. Chidichimo, J. Power Sources, 195, 4365 (2010). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2010.01.037] crossref(new window)

20.
G. Leftheriotis, G. Syrrokostas, and P. Yianoulis, Sol. Energ. Mat. Sol. C, 96, 86 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.09.014] crossref(new window)

21.
J. J. Wu, M. D. Hsieh, W. P Liao, W. T. Wu, and J. S. Chen, ACS Nano, 3, 2297 (2009). [DOI: http://dx.doi.org/10.1021/nn900428s] crossref(new window)

22.
A. Cannavale, M. Manca, F. Malara, L. D. Marco, R. Cingolani, and G. Gigli, Energy Environ. Sci., 4, 2567 (2011). [DOI: http://dx.doi.org/10.1039/c1ee01231b] crossref(new window)

23.
A. Cannavale, M. Manca, L. D. Marco, R. Grisorio, S. Carallo, G. P. Suranna, and G. Gigli, ACS Appl. Mater. Interfaces, 6, 2415 (2014). DOI: http://dx.doi.org/10.1021/am404800m] crossref(new window)

24.
F. Malara, A. Cannavale, and G. Gigli, Proc. of Photovoltaics: Res. Appl., 23, 290 (2015). [DOI: http://dx.doi.org/10.1002/pip.2422] crossref(new window)

25.
Y. Li, J. Hagen, and D. Haarer, Synthetic Met., 94, 273 (1998). [DOI: http://dx.doi.org/10.1016/S0379-6779(98)00013-7] crossref(new window)

26.
C. Y. Hsu, K. M. Lee, J. H. Huang, K.R.J. Thomas, J. T. Lin, K. C. Ho, J. Power Sources, 185, 1505 (2008). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2008.09.031] crossref(new window)

27.
S. Yang, J. Zheng, M. Li, and C. Xu, Sol. Energ. Mat. Sol. C, 97, 186 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.09.038] crossref(new window)

28.
K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei, Energy Environ. Sci., 5, 8384 (2012). [DOI: http://dx.doi.org/10.1039/c2ee21643d] crossref(new window)

29.
C. H. Wu, C. Y. Hsu, K. C. Huang, P. C. Nien, J. T. Lin, and K. C. Ho, Sol. Energ. Mat. Sol. C, 99, 148 (2012). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.033] crossref(new window)

30.
E. Amasawa, N. Sasagawa, M. Kimura, and M. Taya, Adv. Energy. Mater., 4, 1400379 (2014). [DOI: http://dx.doi.org/10.1002/aenm.201400379]

31.
B. N. Reddy, R. Mukkabla, M. Deepa, and P. Ghosal, RSC Adv., 5, 31422 (2015). [DOI: http://dx.doi.org/10.1039/C5RA05015D] crossref(new window)

32.
R. Sydam, R. K. Kokal, and M. Deepa, ChemPhysChem, 16, 1042 (2015) [DOI: http://dx.doi.org/10.1002/cphc.201402862] crossref(new window)

33.
K. S. Ahn, S. J. Yoo, M. S. Kang, J. W. Lee, and Y. E. Sung, J. Power Sources, 168, 533 (2007). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2006.12.114] crossref(new window)

34.
K. F. Chen, C. H. Liu, C. K. Hsieh, C. L. Lin, H. K. Huang, C. H. Tsai, and F. R. Chen, J. Power Sources, 247, 939 (2014). [DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.08.103] crossref(new window)

35.
R. R. Lunt and V. Bulovic, Appl. Phys. Lett., 98, 113305-1 (2011). [DOI: http://dx.doi.org/10.1063/1.3567516] crossref(new window)

36.
A. L. Dyer, R. H. Bulloch, Y. Zhou, B. Kippelen, J. R. Reynolds, and F. Zhang, Adv. Mater., 26, 4895 (2014). [DOI: http://dx.doi.org/10.1002/adma.201401400] crossref(new window)

37.
A. Cannavale, G. E. Eperon, P. Cossari, A. Abate, H. J. Snaith, and G. Gigli, Energy Environ. Sci., 8, 1578 (2015). [DOI: http://dx.doi.org/10.1039/C5EE00896D] crossref(new window)

38.
G. E. Eperon, V. M. Burlakov, A. Goriely, and H. J. Snaith, ACS Nano, 8, 591 (2014). [DOI: http://dx.doi.org/10.1021/nn4052309] crossref(new window)