JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Design and Fabrication of Micro Patterns on Flexible Copper Clad Laminate (FCCL) Using Imprinting Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design and Fabrication of Micro Patterns on Flexible Copper Clad Laminate (FCCL) Using Imprinting Process
Min, Chul Hong; Kim, Tae Seon;
  PDF(new window)
 Abstract
In this paper, we designed and fabricated low cost imprinting process for micro patterning on FCCL (flexible copper clad laminate). Compared to conventional imprinting process, developed fabrication method processing imprint and UV photolithography step simultaneously and it does not require resin etch process and it can also reduce the fabrication cost and processing time. Based on proposed method, patterns with linewidth are fabricated on FCCL. Compared to conventional methods using LDI (laser direct imaging) equipment that showed minimum line with , proposed method shows comparable pattern resolution with very competitive price and shorter processing time. In terms of mass production, it can be applied to fabrication of large-area low cost applications including FPCB.
 Keywords
Imprint;FCCL (flexible copper clad laminate);FPCB;Resin;
 Language
Korean
 Cited by
 References
1.
A. Cherala, P. Schumaker, B. Mokaberi, K. Selinidis, B. J. Choi, M. J. Meissl, N. N. Khusnatdinov, D. LaBrake, and S. Sreenivasan, IEEE/ASME Trans. Mech., 20, 122 (2015). [DOI: http://dx.doi.org/10.1109/TMECH.2013.2297679] crossref(new window)

2.
Takei, Satoshi, and M. Hanabata, Appl. Phys. Lett., 107, 14 (2015). [DOI: http://dx.doi.org/10.1063/1.4932647] crossref(new window)

3.
S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys, Lett., 67, 3114 (1995). [DOI: http://dx.doi.org/10.1063/1.114851] crossref(new window)

4.
J. Haisma, M. Verheijen, and K. Heuvel, J. Vac. Sci. Technol. B, 14, 4124 (1996). [DOI: http://dx.doi.org/10.1116/1.588604] crossref(new window)

5.
S. Thoms, D. S. Macintyre, D. Moran, and I. Thayne, J. Vac. Sci. Technol. B, 22, 3271 (2004). [DOI: http://dx.doi.org/10.1116/1.1821504] crossref(new window)

6.
Y. K. Kim, J. H. Kim, B. S. You, J. S. Jang, K. H. Kwon, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 10 (2011).

7.
M. Austin, H. Ge, W. Wu, M. Li, and Z. Yu, Appl. phys. Lett., 84, 5229 (2004). [DOI: http://dx.doi.org/10.1063/1.1766071] crossref(new window)

8.
D. Morihara, H. Hiroshima, and Y. Hirai, Microelectron. Eng., 86, 684 (2009). [DOI: http://dx.doi.org/10.1016/j.mee.2008.12.005] crossref(new window)

9.
S. E. Lee, H. G. Lim, S. S. Lee, D. G. Choi, D. Lee, and S. U. Hong, Macromol. Res., 21, 916 (2013). [DOI: http://dx.doi.org/10.1007/s13233-013-1107-5] crossref(new window)