JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of the Control of Bowing in Free-standing GaN by Mechanical Polishing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of the Control of Bowing in Free-standing GaN by Mechanical Polishing
Gim, Jinwon; Son, Hoki; Lim, Tae-Young; Lee, Mijai; Kim, Jin-Ho; Jeon, Dae-Woo; Hwang, Jonghee; Jung, Jung-Young; Oh, Hae-Kon; Kim, Jin-Hun; Choi, YoungJun; Lee, Hae-Yong; Yoon, Dae-Ho;
  PDF(new window)
 Abstract
In this paper, we have studied the effect of mechanical polishing to Ga-polar face for reducing the wafer bowing and strain in free-standing GaN. After the mechanical polishing to Ga-polar face, the bowing of the free-standing GaN substrate significantly decreased with increasing the size of diamond slurry, and eventually changed the bowing direction from concave to convex. Furthermore, the full width at half maximum (FWHM) of high-resolution X-ray diffraction (HR-XRD) were decreased, especially the FWHM of (1 0 2) reflection for size of diamond slurry was significantly decreased from 630 to 203 arcsec. In the case, we confirmed that the compressive strain in Ga-polar face was fully released by Raman measurement.
 Keywords
Bowing;Freestanding GaN;Mechanical polishing;Refractive index;
 Language
Korean
 Cited by
 References
1.
S. Nakamura, T. Mukai, and M. Senon, Appl. Phys. Lett., 64, 1687 (1994). [DOI: http://dx.doi.org/10.1063/1.111832] crossref(new window)

2.
C. D. Thurmond and R. A. Rogan, J. Electrochem. Soc., 119, 622 (1972). [DOI: http://dx.doi.org/10.1149/1.2404274] crossref(new window)

3.
C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol. C, 0, 1627 (2003). [DOI: http://dx.doi.org/10.1002/pssc.200303140] crossref(new window)

4.
M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, J. Cryst. Growth, 303, 472 (2007). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2006.12.041] crossref(new window)

5.
E. M. Goldys, T. Paskova, I. G. Ivanov, B. Arnaudov, and B. Monemar, Appl. Phys. Lett., 73, 3583 (1998). [DOI: http://dx.doi.org/10.1063/1.122831] crossref(new window)

6.
B. Monemar, H. Larsson, C. Hemmingsson, I. G. Ivanov, and D. Gogova, J. Cryst. Growth, 281, 17 (2005). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2005.03.040] crossref(new window)

7.
D. L. Rousseau and J. Raman, Spectrosc., 10, 94 (1981). [DOI: http://dx.doi.org/10.1002/jrs.1250100116] crossref(new window)

8.
P. Perlin, C. Jauberbie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, Phys. Rev. B, 45, 83 (1992). [DOI: http://dx.doi.org/10.1103/PhysRevB.45.83] crossref(new window)

9.
C. Kisielowski, J. Krueger, S. Ravimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B, 54, 17745 (1996). [DOI: http://dx.doi.org/10.1103/PhysRevB.54.17745] crossref(new window)

10.
M. Seon, T. Prokfyeva, M. Holtz, S. A. Nikishin, N. N. Fleev, and H. Temkin, Appl. Phys. Lett., 76, 1842 (2000). [DOI: http://dx.doi.org/10.1063/1.126186] crossref(new window)

11.
T. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S. A. Nikishin, N. N. Fleev, H. Temkin, and S. Zollner, Phys. Lett., 76, 1842 (2000).

12.
Y. J. Choi, H. K Oh, J. G. Kim, H. H. Hwang, H. Y. Lee, W. J. Lee, B. C. Shin, and J. H. Hwang, Phys. Status Solidi, C, 7, 1770 (2010). [DOI: http://dx.doi.org/10.1002/pssc.200983632] crossref(new window)

13.
C. Nootz, A. Schulte, and L. Chernyak, Appl. Phys. Lett., 80, 1355 (2002). [DOI: http://dx.doi.org/10.1063/1.1449523] crossref(new window)