Advanced SearchSearch Tips
The Effect of Packing Density on the Warpage Behavior of Ni-Zn-Cu Ferrite Sheets
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effect of Packing Density on the Warpage Behavior of Ni-Zn-Cu Ferrite Sheets
Kim, Shi Yeon; Yeo, Dong-Hun; Shin, Hyo-Soon; Song, Woo Chang; Yoon, Ho Gyu;
  PDF(new window)
It is necessary for ferrite sheets to be fabricated with high packing density for excellent electrical properties and high strength. In this study, the relationship between the warpage and the packing density of ferrite green sheet, was investigated with amount variation of organic additives. With 0.4 wt% of dispersant, the packing density was about 48% and warpage appeared 0.5~1.3 mm high. With 1.4 wt% of dispersant, the packing density increased up to 57% and warpage appeared 0.8~2.1 mm high. With high packing density, warpage appeared along the edges of specimen, while with low packing density, deformation appeared over whole specimen inhomogeneously. It is thought that inhomogeneous deformation after sintering came from the inhomogeneity in green sheet prepared with badly dispersed slurry. With good homogeneity in green sheet from well-dispersed slurry, isotropic shrinkage is thought to have occurred along the distance from center to edges of specimen during sintering.
Ni-Zn-Cu ferrite;Dispersion;Green sheet;Packing density;Warpage;
 Cited by
R. E. Mistler and E. R. Twiname, Tape Casting: Theory and Practice (John Wiley & Sons, New York, 2000) p. 1-4.

J. H. Feng and F. Dogan, J. Am. Ceram. Soc., 83, 1681 (2000). [DOI:]

H. Verweij and W.H.M. Bruggink, J. Am. Ceram. Soc., 73, 226 (1990). [DOI:] crossref(new window)

Y. T. Chou, Y. T. Ko, and M. F. Yan, J. Am. Ceram. Soc., 70, C-280 (1987). [DOI:]

R. M. German, Metall. Trans. A, 23A, 1455 (1992). [DOI:] crossref(new window)

D. J. Shaw, Introduction to Colloid and Surface Chemistry (Batterworths, Boston, Massachusetts, 1980) p. 5.

S. K. Lee, S. S. Ryu, and D. H. Yoon, J. Electroceram., 18, 1 (2007). [DOI:] crossref(new window)

M. H. Lee, I. S. Park, D. J. Kim, and D. Y. Lee, J. Kor. Ceram. Soc., 37, 824 (2000).

S. Nayak, B. P. Singh, L. Besra, T. K. Chongdar, N. M. Gokhale, and S. Bhattacharjee, J. Am. Ceram. Soc., 94, 3742 (2011). [DOI:] crossref(new window)

C. Khamkasem and A. Chaijaruwanich, Ferroelectrics, 455, 129 (2013). [DOI:] crossref(new window)

J. H. You, D. H. Yeo, J. S. Lee, H. S. Shin, H. G. Yoon, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 1112 (2006).

M. D. Sacks and G. W. Scheiffele, Multilayer Ceramic Devices, Advances in Ceramics, 19 (eds. J. B. Blum and W. R. Cannon) (American Ceramic Society, Westerwille, Ohio, 1986) p. 175.

M. D. Sacks, C. S. Khadilkar, G. W. Scheiffele, A. V. Shenoy, J. H. Dow, and R. S. Sheu, Ceramic Powder Science, Advances in Ceramics, 21 (eds G. L. Messing, K. S. Mazdiyasni, J. W. McCauley and R. A. Haber) (American Ceramic Society, Westerwille, Ohio, 1987) p. 495.

J. H. Jean, S. F. Yeh, and C. J. Chen, J. Mater. Res., 12, 1062 (1997). [DOI:] crossref(new window)

V. L. Richards, J. Amer. Ceram. Soc., 72, 325 (1989). [DOI:] crossref(new window)

P. M. Raj, A. Odulena, and W. R. Cannon, Acta Materialia, 50, 2559 (2002). [DOI:] crossref(new window)

A. Shui, N. Uchida, and K. Uematsu, Powder Technol., 127, 9 (2002). [DOI:] crossref(new window)

S. T. Lin and R. M. German, J. Am. Ceram. Soc., 71, C-432 (1988). [DOI:] crossref(new window)

R. A. Gregg and F. N. Rhines, Metall. Trans., 4, 1365 (1973). [DOI:] crossref(new window)

S. H. Lee, G. L. Messing, and M. Awano, J. Am. Ceram. Soc., 91, 421 (2008). [DOI:] crossref(new window)