Advanced SearchSearch Tips
ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices
Kim, Hyunki; Kim, Hong-Sik; Patel, Malkeshkumar; Kim, Joondong;
  PDF(new window)
Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction of p-type NiO and n-type ZnO. A functional template of ITO nanowires (NWs) was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.
Transparent photoelectric devices;ITO nanowires;NiO;ZnO;Heterojunction;
 Cited by
A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 486, 38 (2005). [DOI:] crossref(new window)

C. J. Kim, S. W. Kim, J. H. Lee, J. S. Park, S. I. Kim, J. C. Park, E. H. Lee, J. C. Lee, Y. S. Park, J. H. Kim, S. T. Shin, and U. I. Chung, Appl. Phys. Lett., 95, 252103 (2009). [DOI:] crossref(new window)

H. S. Kim, M. Patel, H. K. Kim, J. Y. Kim, M. K. Kwon, and J. D. Kim, Mater. Lett, 160, 305 (2015). [DOI:] crossref(new window)

V. Craciun, J. Elders, J.G.E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett., 65, 2963 (1994). [DOI:] crossref(new window)

W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, and H. J. Lee, Appl. Phys. Lett., 85, 5052 (2004). [DOI:] crossref(new window)

H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, Appl. Phys. Lett., 83, 1029 (2003). [DOI:] crossref(new window)

H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films, 445, 317 (2003). [DOI:] crossref(new window)

H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, J. Appl. Phys., 86, 6451 (1999). [DOI:] crossref(new window)

T. Karasawa and Y. Miyata, Thin Solid Films, 223, 135 (1993). [DOI:] crossref(new window)

S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, J. Vac. Sci. Technol. A, 8, 1403 (1990). [DOI:] crossref(new window)

A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. van Schalkwijk, Nature Materials, 4, 366 (2005). [DOI:] crossref(new window)

X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett., 88, 201907 (2006). [DOI:] crossref(new window)

H. S. Kim, J. H. Yun, H. H. Park, M. D. Kumar, and J. D. Kim, Mater. Lett., 148, 174 (2015). [DOI:] crossref(new window)

R. K. Gupta, K. Ghosh, and P. K. Kahol, Physica E:Low-dimensional Systems and Nanostructures, 41, 614 (2009).

M. Patel, H. S. Kim, and J. D. Kim, Adv. Electron. Mater., 1, 1500232 (2015).

J. H. Yun, E. Lee, H. H. Park, D. W. Kim, W. A. Anderson, J. Kim, N. M. Litchinitser, J. Zeng, J. Yi, M. M. Kumar, and J. Sun, Scientific Reports, 4, 6879 (2014). [DOI:] crossref(new window)

J. Kim, J. H. Yun, H. Kim, Y. Cho, H. H. Park, M. M. D. Kumar, J. Yi, W. A. Anderson, and D. W. Kim, Scientific Reports, 5, 9256 (2015). [DOI:] crossref(new window)