JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Effects of Al-substitution on Thermoelectric and Charge Transport Properties of BiCuOSe Compounds
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Effects of Al-substitution on Thermoelectric and Charge Transport Properties of BiCuOSe Compounds
An, Tae-Ho; Lim, Young Soo; Seo, Won-Seon; Park, Cheol-Hee; Park, Chan;
  PDF(new window)
 Abstract
The effects of Al-substitution on thermoelectric and charge transport properties of BiCuOSe compounds were investigated. The compounds were prepared by a solid-state reaction and consolidated by SPS (spark plasma sintering). In spite of the increase in the hole concentration with increasing Al amounts in BiCuOSe compound, the electrical conductivity at room temperature was kept constant due to the reduction of mobility. However, electrical conductivities of Al-substituted BiCuOSe compounds at elevated temperature (> 600 K) were higher than those of BiCuOSe, and this result was discussed in terms of it`s the band gap energy. The Seebeck coefficient was drastically reduced when Al was substituted in Bi site, which indicated that the electronic structure was influenced by the Al-substitution into Bi-site.
 Keywords
Thermoelectric;Charge transport;Al substitution;BiCuOSe;
 Language
Korean
 Cited by
 References
1.
D. M. Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995). [DOI: http://dx.doi.org/10.1201/9781420049718] crossref(new window)

2.
H. J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964). [DOI: http://dx.doi.org/10.1007/978-1-4899-5723-8] crossref(new window)

3.
T. M. Tritt, Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research: Part One to Three (Academic, San Diego, 2001).

4.
Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 8, 2580 (2008). [DOI: http://dx.doi.org/10.1021/nl8009928] crossref(new window)

5.
X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 10, 3373 (2010). [DOI: http://dx.doi.org/10.1021/nl101156v] crossref(new window)

6.
J. P. Heremans, V. Jovovic1, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science, 321, 554 (2008). [DOI: http://dx.doi.org/10.1126/science.1159725] crossref(new window)

7.
K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature, 489, 414 (2012) [DOI: http://dx.doi.org/10.1038/nature11439] crossref(new window)

8.
X. Shi, H. Kong, C. P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett., 92, 182101 (2008). [DOI: http://dx.doi.org/10.1063/1.2920210] crossref(new window)

9.
X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc., 133, 7837 (2011). [DOI: http://dx.doi.org/10.1021/ja111199y] crossref(new window)

10.
H. Ohta, K. Sugiura, and K. Koumoto, Inorganic Chemistry, 47, 8429 (2008). [DOI: http://dx.doi.org/10.1021/ic800644x] crossref(new window)

11.
Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature, 423, 425 (2003). [DOI: http://dx.doi.org/10.1038/nature01639] crossref(new window)

12.
S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys., 97, 034106 (2005). [DOI: http://dx.doi.org/10.1063/1.1847723] crossref(new window)

13.
M. Palazzi, C. R. Acad. Sci. Paris, 292, 789 (1981).

14.
W. J. Zhu, Y. Z. Huang, C. Dong, and Z. X. Zhao, Mater. Res. Bull., 29, 143 (1994). [DOI: http://dx.doi.org/10.1016/0025-5408(94)90134-1] crossref(new window)

15.
B. A. Popovkin, A. M. Kusainova, V. A. Dolgikh, and L. G. Aksel’rud, Russ. J. Inorg. Chem., 43, 1471 (1998).

16.
L. D. Zhao, J. He, D. Berardan, Y. Lin, J. F. Li, C. W. Nan, and N. Dragoe, Energy. Environ. Sci., 7, 2900 (2014). [DOI: http://dx.doi.org/10.1039/C4EE00997E] crossref(new window)

17.
J. L. Lan, B. Zhan, Y. C. Liu, B. Zheng, Y. Liu, Y. H. Lin, and C. W. Nan, Appl. Phys. Lett., 102, 123905 (2013). [DOI: http://dx.doi.org/10.1063/1.4799643] crossref(new window)

18.
J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L. D. Zhao, J. Alloy. Compd., 551, 649 (2013). [DOI: http://dx.doi.org/10.1016/j.jallcom.2012.10.160] crossref(new window)

19.
F. Li, T. R. Wei, F. Kang, and J. F. Li, J. Mater. Chem,. A, 1, 11942 (2013). [DOI: http://dx.doi.org/10.1039/c3ta11806a] crossref(new window)

20.
L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett,. 97, 092118 (2010). [DOI: http://dx.doi.org/10.1063/1.3485050] crossref(new window)

21.
J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L. D. Zhao, Energy Environ. Sci., 5, 8543 (2012). [DOI: http://dx.doi.org/10.1039/c2ee22622g] crossref(new window)

22.
J. Sui, J. Li, J. He, Y. L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L. D. Zhao, Energy Environ. Sci., 6, 2916 (2013). [DOI: http://dx.doi.org/10.1039/c3ee41859f] crossref(new window)

23.
L. Pan, D. Berardan, L. Zhao, C. Barreteau, and N. Dragoe, Appl. Phys. Lett., 102, 023902 (2013). [DOI: http://dx.doi.org/10.1063/1.4775593] crossref(new window)

24.
S. D. N. Luu and P. Vaqueiro, J. Mater. Chem. A, 1, 12270 (2013). [DOI: http://dx.doi.org/10.1039/c3ta12753b] crossref(new window)

25.
J. L. Lan, Y. C. Liu, B. Zhan, Y. H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C. W. Nan, Adv. Mater., 25, 5086 (2013). [DOI: http://dx.doi.org/10.1002/adma.201301675] crossref(new window)

26.
J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A, 2, 4903 (2014). [DOI: http://dx.doi.org/10.1039/c3ta14532h] crossref(new window)

27.
D. S. Lee, T. H. An, M. Jeong, H.-S. Choi, Y. S. Lim, W. S. Seo, C. H. Park, C. Park, and H. H. Park, Appl. Phys. Lett., 103, 232110 (2013).. [DOI: http://dx.doi.org/10.1063/1.4837475] crossref(new window)

28.
Y. Liu, L. D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B. P. Zhang, D. Berardan, N. Dragoe, Y. H. Lin, C. W. Nan, J. F. Li, and H. Zhu, J. Am. Chem. Soc., 133, 20112 (2011). [DOI: http://dx.doi.org/10.1021/ja2091195] crossref(new window)

29.
Z. Li, C. Xiao, S. Fan, Y. Deng, W. Zhang, B. Ye, and Y. XIe, J. Am. Chem. Soc., 137, 6587 (2015). [DOI: http://dx.doi.org/10.1021/jacs.5b01863] crossref(new window)

30.
Y. Liu, J. Ding, B. Xu, J. Lan, Y. Zheng, B. Zhang, Y. Lin, and C. Nan, Appl. Phys. Lett., 106, 233903 (2015). [DOI: http://dx.doi.org/10.1063/1.4922492] crossref(new window)

31.
C. Barreteau, D. Berardan, L. D. Zhao, and N. Dragoe, J. Mater. Chem. A, 137, 6587 (2015).

32.
Y. Liu, J. Lan , W. Xu, Y. Liu, Y. L. Pei, B. Cheng, D. B. Liu, Y. H. Lin, and L. D. Zhao, Chem. Commun., 49, 8075 (2013). [DOI: http://dx.doi.org/10.1039/c3cc44578j] crossref(new window)

33.
M. A. Green, Appl. Phys. Lett., 67, 2944 (1990).