JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite
Nam, Woo Hyun; Meang, Eun-Ji; Lim, Young Soo; Lee, Soonil; Seo, Won-Seon; Lee, Jeong Yong;
  PDF(new window)
 Abstract
In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled skutterudite (). powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.
 Keywords
Skutterudite;High-energy ball milling;Thermoelectric properties;Charge transport;
 Language
Korean
 Cited by
 References
1.
G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling (CRC Press, Boca Raton, 1995) p. 407. [DOI: http://dx.doi.org/10.1201/9781420049718.ch34] crossref(new window)

2.
X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc., 133, 7837 (2011). [DOI: http://dx.doi.org/10.1021/ja111199y] crossref(new window)

3.
H. Li, X. F. Tang, Q. J. Zhang, and C. Uher, Appl. Phys. Lett., 94, 102114 (2009). [DOI: http://dx.doi.org/10.1063/1.3099804] crossref(new window)

4.
J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett., 90, 192111 (2007). [DOI: http://dx.doi.org/10.1063/1.2737422] crossref(new window)

5.
B. L. Yu, X. F. Tang, Q. J. Zhang, T. X. Liu, P. F. Luo, and J. Wang, 22nd International Conference on Thermoelectrics (International Conference on Thermoelectrics, 2003) p. 101.

6.
L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, M. J. Zehetbauer, J. Wosik, and G. E. Nauer, J. Alloy. Compd., 29, 106 (2009). [DOI: http://dx.doi.org/10.1016/j.jallcom.2009.03.109]