JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Review : Improvement of Electrical Performance in the Oxide Semiconductor Thin Film Transistor Using Various Treatment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Review : Improvement of Electrical Performance in the Oxide Semiconductor Thin Film Transistor Using Various Treatment
Kim, Taeyong; Jang, Kyungsoo; Raja, Jayapal; Phu, Nguyen Thi Cam; Lee, Sojin; Kang, Seungmin; Trinh, Than Thuy; Lee, Youn-Jung; Yi, Junsin;
  PDF(new window)
 Abstract
The ultimate aims of display market is transparent or flexible. Researches have been carried out for various applications. It has been possible to reduced the process steps and get good electrical properties for semiconductors with large optical bandgaps. Oxide semiconductors have been established as one of the leading and promising technology for next generation display panels. In this paper, alternative treatment processes have been tried for oxide semiconductors of thin film transistors to increase the electrical properties of the thin film transistors and to investigate the mechanisms. There exist a various oxide semiconductors. Here, we focused on InGaZnO, ZnO and InSnZnO which are commercialized or researched actively.
 Keywords
InGaZnO;ZnO;InSnZnO;Hydrogenation;N-doped;Oxide TFTs;
 Language
Korean
 Cited by
1.
IGZO박막 증착 공정에서 플라즈마 방출광 모니터링 및 플라즈마 균일도 제어,최진우;황상혁;김우재;신기원;권희태;조태훈;우원균;차성덕;안병철;박완우;도재철;권기청;

반도체디스플레이기술학회지, 2016. vol.15. 4, pp.27-32
 References
1.
E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: http://dx.doi.org/10.1002/adma.201103228] crossref(new window)

2.
H. A. Klasens and H. Koelmans, Solid-State Electron., 7, 701 (1964). [DOI: http://dx.doi.org/10.1016/0038-1101(64)90057-7] crossref(new window)

3.
M.W.J. Prins, K. O. Grosse-Holz, G. Muller, J.F.M Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, Appl. Phys. Lett., 68, 3650 (1996). [DOI: http://dx.doi.org/10.1063/1.115759] crossref(new window)

4.
C. H. Seager, D. C. McIntyre, W. L. Warren, and B. A. Tuttle, Appl. Phys. Lett., 68, 2660 (1996). [DOI: http://dx.doi.org/10.1063/1.116273] crossref(new window)

5.
A. Aoki and H. Sasakura, Jpn. J. Appl. Phys., 9, 582 (1970). [DOI: http://dx.doi.org/10.1143/JJAP.9.582] crossref(new window)

6.
K. S. Jang, J. Raja, T. Y. Kim, S. M. Kang, S. J. Lee, N.T.C. Phu, T. T. Trinh, Y. J. Lee, and J. S. Yi, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 351 (2015).

7.
T. Arai, Inf. Display, 20, 156 (2012). [DOI: http://dx.doi.org/10.1889/JSID20.3.156] crossref(new window)

8.
K. Remashan, D. K. Hwang, S. J. Park, and J. H. Jang, IEEE Trans. Electron Dev., 55, 2736 (2008). [DOI: http://dx.doi.org/10.1109/TED.2008.2003021] crossref(new window)

9.
Y. H. Kang, Adv. Electron. Mater., 1, 1400006 (2015).

10.
S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Shen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, Solid-state Electron., 54, 1497 (2010). [DOI: http://dx.doi.org/10.1016/j.sse.2010.08.001] crossref(new window)

11.
Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys., 88, 498 (2000). [DOI: http://dx.doi.org/10.1063/1.373685] crossref(new window)

12.
P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, and H. P. Shieh, Appl. Phys. Lett., 98, 052102 (2011). [DOI: http://dx.doi.org/10.1063/1.3551537] crossref(new window)

13.
J. Raja, K. S. Jang, N. Balaji, W. J. Choi, T. T. Trinh, and J. S. Yi, Appl. Phys. Lett., 102, 083505 (2013). [DOI: http://dx.doi.org/10.1063/1.4793535] crossref(new window)

14.
H. Y. Huang, Device Research Conference (IEEE, Santa Barbara, USA, 2014) p. 161.

15.
J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, Appl. Phys. Lett., 90, 262106 (2007). [DOI: http://dx.doi.org/10.1063/1.2753107] crossref(new window)