JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Review : Improvement of Electrical Performance in the Oxide Semiconductor Thin Film Transistor Using Various Treatment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Review : Improvement of Electrical Performance in the Oxide Semiconductor Thin Film Transistor Using Various Treatment
Kim, Taeyong; Jang, Kyungsoo; Raja, Jayapal; Phu, Nguyen Thi Cam; Lee, Sojin; Kang, Seungmin; Trinh, Than Thuy; Lee, Youn-Jung; Yi, Junsin;
  PDF(new window)
 Abstract
The ultimate aims of display market is transparent or flexible. Researches have been carried out for various applications. It has been possible to reduced the process steps and get good electrical properties for semiconductors with large optical bandgaps. Oxide semiconductors have been established as one of the leading and promising technology for next generation display panels. In this paper, alternative treatment processes have been tried for oxide semiconductors of thin film transistors to increase the electrical properties of the thin film transistors and to investigate the mechanisms. There exist a various oxide semiconductors. Here, we focused on InGaZnO, ZnO and InSnZnO which are commercialized or researched actively.
 Keywords
InGaZnO;ZnO;InSnZnO;Hydrogenation;N-doped;Oxide TFTs;
 Language
Korean
 Cited by
 References
1.
E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: http://dx.doi.org/10.1002/adma.201103228] crossref(new window)

2.
H. A. Klasens and H. Koelmans, Solid-State Electron., 7, 701 (1964). [DOI: http://dx.doi.org/10.1016/0038-1101(64)90057-7] crossref(new window)

3.
M.W.J. Prins, K. O. Grosse-Holz, G. Muller, J.F.M Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, Appl. Phys. Lett., 68, 3650 (1996). [DOI: http://dx.doi.org/10.1063/1.115759] crossref(new window)

4.
C. H. Seager, D. C. McIntyre, W. L. Warren, and B. A. Tuttle, Appl. Phys. Lett., 68, 2660 (1996). [DOI: http://dx.doi.org/10.1063/1.116273] crossref(new window)

5.
A. Aoki and H. Sasakura, Jpn. J. Appl. Phys., 9, 582 (1970). [DOI: http://dx.doi.org/10.1143/JJAP.9.582] crossref(new window)

6.
K. S. Jang, J. Raja, T. Y. Kim, S. M. Kang, S. J. Lee, N.T.C. Phu, T. T. Trinh, Y. J. Lee, and J. S. Yi, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 351 (2015).

7.
T. Arai, Inf. Display, 20, 156 (2012). [DOI: http://dx.doi.org/10.1889/JSID20.3.156] crossref(new window)

8.
K. Remashan, D. K. Hwang, S. J. Park, and J. H. Jang, IEEE Trans. Electron Dev., 55, 2736 (2008). [DOI: http://dx.doi.org/10.1109/TED.2008.2003021] crossref(new window)

9.
Y. H. Kang, Adv. Electron. Mater., 1, 1400006 (2015).

10.
S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Shen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, Solid-state Electron., 54, 1497 (2010). [DOI: http://dx.doi.org/10.1016/j.sse.2010.08.001] crossref(new window)

11.
Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys., 88, 498 (2000). [DOI: http://dx.doi.org/10.1063/1.373685] crossref(new window)

12.
P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, and H. P. Shieh, Appl. Phys. Lett., 98, 052102 (2011). [DOI: http://dx.doi.org/10.1063/1.3551537] crossref(new window)

13.
J. Raja, K. S. Jang, N. Balaji, W. J. Choi, T. T. Trinh, and J. S. Yi, Appl. Phys. Lett., 102, 083505 (2013). [DOI: http://dx.doi.org/10.1063/1.4793535] crossref(new window)

14.
H. Y. Huang, Device Research Conference (IEEE, Santa Barbara, USA, 2014) p. 161.

15.
J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, Appl. Phys. Lett., 90, 262106 (2007). [DOI: http://dx.doi.org/10.1063/1.2753107] crossref(new window)