JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face
Gim, Jinwon; Son, Hoki; Lim, Tea-Young; Lee, Mijai; Kim, Jin-Ho; Lee, Young Jin; Jeon, Dae-Woo; Hwang, Jonghee; Lee, Hae-Yong; Yoon, Dae-Ho;
  PDF(new window)
 Abstract
In this paper, we report that selective etching on N-polar face by EC (electro-chemical)-etching effect on the reduction of bowing and strain of FS (free-standing)-GaN substrates. We applied the EC-etching to concave and convex type of FS-GaN substrates. After the EC-etching for FS-GaN, nano porous structure was formed on N-polar face of concave and convex type of FS-GaN. Consequently, the bowing in the convex type of FS-GaN substrate was decreased but the bowing in the concave type of FS-GaN substrate was increased. Furthermore, the FWHM (full width at half maximum) of (1 0 2) reflection for the convex type of FS-GaN was significantly decreased from 601 to 259 arcsec. In the case, we confirmed that the EC-etching method was very effective to reduce the bowing in the convex type of FS-GaN and the compressive stress in N-polar face of convex type of FS-GaN was fully released by Raman measurement.
 Keywords
GaN;Electro-chemical etching;Bowing;Freestanding GaN;Wet process;
 Language
Korean
 Cited by
 References
1.
The Blue Laser diode (Springer Verlag, Berlin, 1997) p. 12.

2.
C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol., 0, 1627 (2003). [DOI: http://dx.doi.org/10.1002/pssc.200303140] crossref(new window)

3.
M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, J. Cryst. Growth, 303, 472 (2007). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2006.12.041] crossref(new window)

4.
B. Monemar, H. Larsson, C. Hemmingsson, I. G. Ivanov, and D. Gogova, J. Cryst. Growth, 281, 17 (2005). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2005.03.040] crossref(new window)

5.
K. M. Chen, Y. H. Yeh, Y. Hao, C. H. Chiang, D. R. Yang, C. L. Chao, T. W. Chi, Y. H. Fang, J. D. Tsay, and W. I. Lee, J. Cryst. Growth, 312, 3574 (2010). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2010.09.044] crossref(new window)

6.
Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, Nanotechnology, 22, 045603 (2011). [DOI: http://dx.doi.org/10.1088/0957-4484/22/4/045603] crossref(new window)

7.
J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, Appl. Phys. Lett., 94, 221907 (2009). [DOI: http://dx.doi.org/10.1063/1.3153116] crossref(new window)

8.
L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, J. W. Ju, J. H. Baek, J. W. Choi, and I. H. Lee, ACS Appl. Mater. Interfaces, 6, 985 (2014). [DOI: http://dx.doi.org/10.1021/am404285s] crossref(new window)

9.
P. Perlin, C. J.auberbie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, Phys. Rev. B, 45, 83 (1992). [DOI: http://dx.doi.org/10.1103/PhysRevB.45.83] crossref(new window)

10.
C. Kisielowski, J. Krueger, S. Ravimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B, 54, 17745 (1996). [DOI: http://dx.doi.org/10.1103/PhysRevB.54.17745] crossref(new window)

11.
M. Seon, T. Prokfyeva, M. Holtz, S. A. Nikishin, N. N. Fleev, and H. Temkin, Appl. Phys. Lett., 76, 1842 (2000). [DOI: http://dx.doi.org/10.1063/1.126186] crossref(new window)

12.
T. Prokofyeva, M. Seon, J. Vanbuskirk, M. Holtz, S. A. Nikishin, N. N. Fleev, H. Temkin, and S. Zollner, Phys. Lett., 76, 1842 (2000).

13.
Y. J. Choi, H. K Oh, J. G. Kim, H. H. Hwang, H. Y. Lee, W. J. Lee, B. C. Shin, and J. H. Hwang, Phys. Status Solidi C, 7, 1770 (2010). [DOI: http://dx.doi.org/10.1002/pssc.200983632] crossref(new window)

14.
G. Nootz, A. Schulte, and L. Chernyak, Appl. Phys. Lett., 80, 1355 (2002). [DOI: http://dx.doi.org/10.1063/1.1449523] crossref(new window)